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Abstract

A symplectic groupoid is a Lie groupoid, endowed with a symplectic form that is compati-
ble with the groupoid multiplication. The aim of present exposition is to show that symplectic
groupoids generalize the usual symplectic structures, and that we can associate to any given
symplectic groupoid, a canonical Poisson structure on the base manifold. Roughly speaking,
we will see that we can interpret symplectic groupoids as integrated counterparts of Poisson
structures, and the latter as infinitesimal counterparts of the former. To establish the funda-
mental results on symplectic groupoids, we first explore the notion of a symplectic realization
of a Poisson structure, and provide a short introduction to Lie groupoids and algebroids. At
last, we provide a recipe on how to construct the symplectic groupoid realization of a given
Poisson structure, and demonstrate its use on a couple of examples.
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1 Poisson manifolds

In this first section, we recall the basic definitions and results on Poisson manifolds, and establish
an equivalent formulation of a Poisson structure using bivector fields, as this is more useful for
our purpose. Throughout this chapter, M will denote a smooth manifold.

Definition 1.1. A Poisson structure on M is a Lie bracket {·, ·} on C∞(M), which satisfies
the Leibniz rule

{f, gh} = {f, g}h+ g{f, h},

for all f, g, h ∈ C∞(M). The pair (M, {·, ·}) is then called a Poisson manifold. A Poisson
map between Poisson manifolds (M, {·, ·}M ) and (N, {·, ·}N ) is a smooth map ϕ : M → N that
preserves the Poisson structures, that is:

{f ◦ ϕ, g ◦ ϕ}M = {f, g}N ◦ ϕ,

for all f, g ∈ C∞(M).

Due to the Leibniz rule, we have that for any f ∈ C∞(M), the map {f, ·} : C∞(M) →
C∞(M) is a derivation on C∞(M), so it corresponds to a unique vector field Xf ∈ X(M), called
the Hamiltonian vector field of f , defined implicitly as

{f, g} = dg(Xf ).

In a local chart (U, (xi)i) on M , the Hamiltonian vector field Xf has the form

Xf =
∑
i

Xi
f∂i

and now the Leibniz rule implies Xi
fg = gXi

f+fXi
g, hence the map f |U 7→ Xi

f is also a derivation

on C∞(U), so Xi
f =

∑
j π

ij∂jf for some functions πij ∈ C∞(U). This implies that locally,

{f, g} =
∑
i,j

πij(∂if)(∂jg) (1)

for some functions πij , and clearly we must have πij = {xi, xj}. These functions are called
structure functions of the Poisson structure {·, ·} in the chart (U, (xi)i). It is easy to see that
the Jacobi identity on U is equivalent to the system of first-order partial differential equations:∑

l

(
πil∂lπ

jk + πjl∂lπ
ki + πkl∂lπ

ij
)
= 0, i < j < k. (2)

On the other hand, it is straightforward to see that the Jacobi identity for {·, ·} is equivalent to
the map f 7→ Xf being Lie bracket preserving, that is:

X{f,g} = [Xf , Xg]

for any two functions f, g ∈ C∞(M).

Example 1.2.

(i) Any smooth manifold M admits a trivial Poisson structure {·, ·} = 0.
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(ii) Any symplectic structure ω on M gives rise to the Poisson structure on M , given by

{f, g} = −ω(Xf , Xg),

where Xf is the unique vector field satisfying df = ω(Xf , ·). The minus in above definition
makes sure that Xf is the Hamiltonian vector field of f with respect to the Poisson
structure {·, ·} we have just defined, so that the two notions of a Hamiltonian vector field
(with respect to a symplectic and a Poisson structure) agree. In Darboux coordinates
(qi, pi)i on M , we have ω =

∑
i dpi ∧ dqi, so there holds Xqi = ∂pi , Xpi = −∂qi . This

means the structure functions are

{pi, qj} = δji , {qi, qj} = {pi, pj} = 0,

and the Poisson bracket reads

{f, g} =
∑
i

∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
.

(iii) Linear Poisson structures. On M = Rn with the standard coordinates (xi)i, declaring
the structure functions to be constant (that is, πij = −πji ∈ R), always yields a Poisson
structure trivially by equation (2).

(iv) LV-type Poisson structures. On M = Rn with the standard coordinates (xi)i, declaring
the structure functions as πij = aijxixj , where aij = −aji ∈ R are constant, yields a
Poisson structure – we leave it to the reader to check that equation (2) holds.

1.1 Poisson bivector fields

The local expression (1) for the Poisson bracket shows that we may locally express it as a bivector
field π =

∑
i,j π

ij∂i⊗∂j on the chart domain. To develop a global theory for Poisson brackets, it
is crucial that we establish the bijective correspondence between Poisson brackets and Poisson
bivector fields. To do so, we start with the following dual notion to differential forms.

Definition 1.3. A multivector field of degree k on M is a section of the vector bundle ∧kTM ,
i.e. it is an alternating C∞(M)-multilinear map

ϑ :
k∏

i=1

Ω1(M)→ C∞(M).

We denote the C∞(M)-module of all k-vector fields by Xk(M) = Γ∞ (
∧kTM

)
.

Remark 1.4. Defining X0(M) = C∞(M), it is a fact from multilinear algebra that the set

X•(M) =
dimM⊕
k=0

Xk(M),

is an exterior algebra with respect to the the wedge product ∧ : Xk(M)× Xl(M)→ Xk+l(M),

(ϑ ∧ ζ)(α1, . . . , αk+l) =
∑

σ∈Sk+l

(−1)sgnσϑ
(
ασ(1), . . . , ασ(k)

)
ζ
(
ασ(k+1), . . . , ασ(k+l)

)
.
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Moreover, any ϑ ∈ Xk(M) determines a map

Lϑ :
k∏

i=1

C∞(M)→ C∞(M), Lϑ(f1, . . . , fk) = ϑ(df1, . . . ,dfk),

which is clearly an alternating multiderivation (the latter means Leibniz rule holds in any of its
arguments); that the map ϑ 7→ Lϑ is a bijection onto the set of all alternating multiderivations,
is a well-known fact from the theory of smooth manifolds.

The last remark enables us to establish the wanted correspondence – in the particular case
of degree 2, any Poisson structure {·, ·} on M is an alternating biderivation, hence there exists
a bivector field π ∈ X2(M), defined by the equality π(df,dg) = {f, g}, for any f, g ∈ C∞(M).
To rewrite the Jacobi identity as an identity for bivectors, note that for any ϑ ∈ X2(M), the
Schouten bracket∗ [ϑ, ϑ] ∈ X3(M) is the unique 3-vector field, determined by the equation

1

2
L[ϑ,ϑ](f, g, h) = Lϑ(f,Lϑ(g, h)) + Lϑ(g,Lϑ(h, f)) + Lϑ(h,Lϑ(f, g)).

Hence, if π is a bivector field corresponding to an alternating biderivation {·, ·}, then [π, π] = 0
holds if and only if the Jacobi identity for {·, ·} holds. We have just proven the following.

Proposition 1.5. Poisson structures on M are in a bijective correspondence with bivector fields
π ∈ X2(M), satisfying [π, π] = 0. The bijection is induced by the map π 7→ Lπ, so it is given by

π(df, dg) = {f, g} (3)

for any f, g ∈ C∞(M).

From now on, a bivector field π ∈ X2(M) satisfying [π, π] = 0 will be called a Poisson
bivector field, and sometimes also just a Poisson structure.

1.2 Vector bundle maps induced by Poisson structures

We now obtain for our purpose the most important way of seeing Poisson structures, by noting
that any bivector field π ∈ X2(M) induces the following morphism of vector bundles:

π♯ : T ∗M → TM, α 7→ π(α, ·).

This morphism additionally satisfies the equality α(π♯(β)) = −β(π♯(α)), for any α, β ∈ Ω1(M);
this just means that bivector fields are in a bijective correspondence with skew-symmetric vector
bundle maps θ : T ∗M → TM , i.e. the algebraic adjoint† θ∗ satisfies

θ∗ = −θ,
∗The Schouten bracket is more generally defined as the map Xk(M) × Xl(M) ∋ (ϑ, ζ) 7→ [ϑ, ζ] ∈ Xk+l−1(M),

defined as L[ϑ,ζ] = Lϑ ◦ Lζ + (−1)klLζ ◦ Lϑ, where

(Lϑ ◦ Lζ)(f1, . . . , fk+l−1) =
∑

σ∈Sk−1,l

(−1)deg σLϑ

(
fσ(1), . . . , fσ(k−1),Lζ(fσ(k), . . . , fσ(k+l−1))

)
.

Here, Sk,l = {σ ∈⊂ Sk+l | σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + l)} denotes the set of (k, l)-shuffles.
†Recall that if θ : W → V is a linear map, its algebraic adjoint is θ∗ : V ∗ → W ∗, α 7→ α ◦ θ. In our case,

W = V ∗, and so θ∗(α)(β) = α(θ(β))
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or equivalently α(θ(β)) = −β(θ(α)) for any two 1-forms α, β ∈ Ω1(M).
To express the condition [π, π] = 0 in terms of the bundle morphism π♯, it turns out we have

to consider the following bracket on the space of 1-forms:

[α, β]π = Lπ♯αβ − Lπ♯βα− d(π(α, β)), (4)

where L denotes the Lie derivative of a differential form along a vector field.

Proposition 1.6. Let π ∈ X2(M) be a bivector field, and let {f, g} = π(df,dg) be the as-
sociated alternating biderivation. The bracket [·, ·]π is the unique R-bilinear, alternating map
Ω1(M)× Ω1(M)→ Ω1(M), such that the following holds:

(i) On exact forms, [df,dg]π = d{f, g} for all f, g ∈ C∞(M).

(ii) Leibniz rule: [α, fβ]π = f [α, β]π + df(π♯(α))β for all α, β ∈ Ω1(M) and f ∈ C∞(M).

Moreover, the following are equivalent:

(a) [π, π] = 0.

(b) The map π♯ : (Ω1(M), [·, ·]π)→ (X1(M), [·, ·]) preserves the brackets.

(c) [·, ·]π satisfies the Jacobi identity.

Remark 1.7. We will later see that the properties (ii) and (b), and (c) are precisely those
which make the triple (T ∗M, [·, ·]π, π♯) into a Lie algebroid; this is the importance of π♯ for our
discussion.

Proof. Bilinearity and antisymmetry of [·, ·]π is clear. For (i), note that for any X ∈ X(M),

(Lπ♯ df dg)(X) = (π♯ df)(Xg)− [π♯ df,X]g = X((π♯ df)g) = X{f, g},

and so Lπ♯ df dg = d{f, g}, and similarly Lπ♯ dg df = d{g, f} = −d{f, g}. Hence (i) holds.
For (ii), note that

Lfπ♯βα = fLfπ♯βα+ α(π♯β)︸ ︷︷ ︸
π(β,α)

df, d(π(α, fβ)) = f d(π(α, β)) + π(α, β) df

and the rightmost terms of these expressions cancel out. The Leibniz rule for the first term of
(4), together with the remaining above terms, now gives us the desired equality (ii).

For uniqueness, note that any R-bilinear, alternating operation on Ω1(M) that satisfies the
Leibniz rule (ii), is determined by its values on exact forms, hence if it satisfies (i), it must equal
[·, ·]π.

Let’s prove the second part. To prove (a)↔(b), we consider the map Uπ : Ω
1(M)×Ω1(M)→

X1(M),
Uπ(α, β) = [π♯α, π♯β]− π♯([α, β]π),

which is C∞(M)-bilinear by Leibniz rule (ii). We now evaluate

dh(Uπ(df, dg)) = dh[π♯ df, π♯ dg]− dh(π♯([df, dg]π))

= dh[Xf , Xg]− {{f, g}, h}
= Xf (dh(Xg))−Xg(dh(Xf )) + {h, {f, g}}
= {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}},
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for any f, g, h ∈ C∞(M). By C∞(M)-linearity, this means that γ(Uπ(α, β)) =
1
2 [π, π](α, β, γ)

for all α, β, γ ∈ Ω1(M), and this is just the Jacobiator J{·,·}(α, β, γ), implying our equivalence.
To prove (b)↔(c), we consider the Jacobiator of [·, ·]π,

J[·,·]π(α, β, γ) = [α, [β, γ]π]π + [β, [γ, α]π]π + [γ, [α, β]π]π.

A straightforward computation shows that

J[·,·]π(α, β, fγ) = fJ[·,·]π(α, β, γ) + df(Uπ(α, β))γ,

which shows that (c) implies Uπ = 0, hence (b). Conversely, if Uπ = 0, then J[·,·]π is C∞(M)-
multilinear, and we clearly have J[·,·]π(df, dg,dh) = d(J{·,·}(α, β, γ)), which is 0 by (a), so we
conclude J[·,·]π = 0. ■

Remark 1.8. Note that since π♯(df) = Xf , we must have that at every point x ∈ M , the
image

im(π♯
x) = {Xf |x | f ∈ C∞(M)} (5)

of π♯
x is a subspace of TxM , consisting of so-called Hamiltonian directions. In general, this

does not yield a (regular) distribution on M since the rank of π♯ may not be constant, and
we instead get a so-called singular distribution. The last proposition shows that the Poisson
condition [π, π] = 0 nevertheless ensures the involutivity of this singular distribution. The study
of the associated singular foliation is an interesting subject on its own; we direct the interested
reader to [1, Chapter 4], where it is shown that the leaves of this singular foliation are in fact
symplectic manifolds.

Example 1.9. Any 2-form ω ∈ Ω2(M) determines the vector bundle map

ω♭ : TM → T ∗M, v 7→ ω(v, ·).

In the case when ω is nondegenerate, the inverse (ω♭)−1 of ω♭ is clearly a skew-symmetric map.
Hence we must have (ω♭)−1 = π♯ for some unique π ∈ X2(M). It is easy to see that this can be
rewritten as

ω(π♯α, π♯β) = −π(α, β),

Using the formula for exterior derivative of 2-forms on the expression dω(π♯ df, π♯ dg, π♯ dh), we
get

dω(π♯ df, π♯ dg, π♯ dh) = Xf (ω(Xg, Xh)) +Xg(ω(Xh, Xf )) +Xh(ω(Xf , Xg))

− ω([Xf , Xg], Xh)− ω([Xg, Xh], Xf )− ω([Xh, Xf ], Xg)

from which it is straightforward to see

dω(π♯ df, π♯ dg, π♯ dh) = −2({f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}),

and hence by C∞(M)-linearity,

[π, π](α, β, γ) = −dω(π♯α, π♯β, π♯γ),

for all α, β, γ ∈ Ω1(M). This means that closedness of ω is equivalent to the Jacobi identity
for π. Hence, there is a bijective correspondence between symplectic forms and nondegenerate
Poisson bivector fields on M . ♦
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1.3 Bivector fields and Poisson maps

Recall from the theory of smooth manifolds that, given a smooth map ϕ : M → N , a vector field
X ∈ X(M) is said to be ϕ-related to Y ∈ X(N), if for any x ∈ X, there holds

Yϕ(x) = dϕx(Xx).

Definition 1.10. Let ϕ : M → N be a smooth map. A k-vector field ϑ ∈ Xk(M) is ϕ-related
to a k-vector field ζ ∈ Xk(N), if for any x ∈ X there holds

ζϕ(x) = (dϕx)∗(ϑx),

where the linear map (dϕx)∗ :
∧k TxM →

∧k Tϕ(x)N is induced in the obvious way by dϕx.

Remark 1.11. If ζ is ϕ-related to ϑ, we must have ζy = (dϕx)∗(ϑx) for every x ∈ ϕ−1(y) and
every y ∈ imϕ. If the map ϕ is also surjective, then ζ is completely determined by ϑ – in this
case, we say that ζ is the pushforward of ϑ along ϕ, and write ζ = ϕ∗ϑ.

A similar proof to that for ordinary vector fields shows that ϑ is ϕ-related to ζ if and only
if there holds

Lϑ(f1 ◦ ϕ, . . . , fk ◦ ϕ) = Lζ(f1, . . . , fk) ◦ ϕ (6)

for any f1, . . . , fk ∈ C∞(N).

The notion of relatedness of k-vector fields enables us to establish the following characteri-
zation of Poisson maps, which will be used in our discussion.

Proposition 1.12. Let ϕ : M → N be a smooth map between Poisson manifolds (M,πM ) and
(N, πN ). The following are equivalent:

(i) ϕ is a Poisson map.

(ii) πM is ϕ-related to πN .

(iii) For any f ∈ C∞(N) the Hamiltonian vector fields Xf◦ϕ ∈ X(M) and Xf ∈ X(N) are
ϕ-related.

(iv) π♯
N = dϕx ◦ π♯

M ◦ (dϕx)
∗, i.e. the following diagram commutes:

TxM Tϕ(x)N

T ∗
xM T ∗

ϕ(x)N(dϕx)∗

π♯
N

dϕx

π♯
M

Proof. The characterizing equation (6) of ϕ-relatedness trivially gives equivalences (i)↔(ii) and
(i)↔(iii). To show the equivalence (ii)↔(iv), note that for any α, β ∈ T ∗

ϕ(x)N , (ii) can be
rewritten as (

(dϕx)∗πM
)
(α, β) = πN (α, β)(

dϕx
∗β

)
(π♯

M (dϕx
∗α)) = β(π♯

N (α))

β(dϕx(π
♯
M (dϕx

∗α))) = β(π♯
N (α)).

Since this holds for all α, β ∈ T ∗
ϕ(x)N , we are done. ■

7



2 Symplectic realizations

As observed in Remark 1.8, a Poisson structure can have non-constant rank, and will not be
well-behaved globally, in general. An important way to study such behaviour is by considering
nondegenerate Poisson structures, which are submersed onto our Poisson manifold of interest,
via a Poisson map.

Definition 2.1. A symplectic realization of a Poisson manifold (M,π) is a symplectic manifold
(S, ω), together with a surjective submersion µ : S →M that is a Poisson map.

In the last definition, we are endowing S with the nondegenerate Poisson structure πω from
Example 1.9, i.e. π♯

ω = (ω♭)−1. Proposition 1.12 shows that the requirement on µ of being a
Poisson map can be expressed as

π♯|µ(p) = dµp ◦ π♯
ω|p ◦ (dµp)

∗ (7)

for any p ∈ S. Furthermore, given any p ∈ S, notice that since dµp is surjective, (dµp)
∗ is

injective, hence π♯
ω ◦ (dµp)

∗ is also injective, and it maps ker(π♯|µ(p)) into ker(dµp). Hence by
rank-nullity,

dimM − rankπµ(p) = dim(ker(π♯|µ(p))) ≤ dim(ker(dµp)) = dimS − dimM,

and since µ is surjective, the following proposition is proven.

Proposition 2.2. If (S, ω) is a symplectic realization of (M,π), then for any x ∈M , we have

dimS ≥ 2 dimM − rankπx.

Example 2.3. Consider the zero Poisson structure {x, y} = 0 on R2. By last proposition, we
must have dimS ≥ 4, so we try with S = R4, and denote the variables on R4 as (x, y, u, v). A
simple way of obtaining a nondegenerate Poisson structure on R4 is by adding to {x, y} = 0 the
structure functions

{x, u} = 1, {y, v} = 1, {u, v} = 0.

In this way, we obtain the canonical symplectic structure on R4, together with the map

µ(x, y, u, v) = (x, y).

In the last section, this example will be generalized to R2n in a more insightful way. ♦

Remark 2.4. Given a Poisson manifold (M,π), the recipe for obtaining a symplectic realization
locally has the following form. If µ : (S, ω) → (M,π) is a symplectic realization, and x =
(x1, . . . , xm) are local coordinates on M with structure functions {xi, xj} = πij(x), then there
are (by rank theorem) local coordinates (x, u) = (x1, . . . , xm, u1, . . . , u

n) on S, such that the
map µ is given by the projection. Since µ is a Poisson map, the structure functions of the
nondegenerate Poisson structure on S read

{xi, xj} = πij(x), {xi, ua} = ϑia(x, u), {ua, ub} = φab(x, u),

or more explicitly,

πω =
∑
i<j

πij(x)∂xi ∧ ∂xj +
∑
i<a

ϑij(x, u)∂xi ∧ ∂ua +
∑
a<b

φab(x, u)∂ua ∧ ∂ub .

Thus, when searching for a symplectic realization of a Poisson manifold which is covered by
one chart, we should adjoin to coordinates (xi)i the coordinates (ua)a and find new functions
ϑia, φab such that πω is a nondegenerate Poisson structure.

8



2.1 Libermann’s theorem

As Remark 1.7 suggests and as we will later see, the questions of existence and uniqueness
of a symplectic realization boil down to problems in Lie theory. The following theorem is an
important step towards seeing this.

Theorem 2.5 (Libermann). Let (S, ω) be a symplectic manifold and let µ : S → M be a
surjective submersion with connected fibres. Then M admits a Poisson structure π such that
µ : (S, ω) → (M,π) is a symplectic realization, if and only if the ω-orthogonal distribution to
the fibres of µ,

(ker dµ)ω ⊂ TS,

is an involutive distribution. In this case, π is unique.

Proof. Equation (7) shows that π is unique, if it exists. To show existence, note that since
µ : S →M is a surjective submersion, any function f : M → R is smooth if and only if f ◦µ : S →
R is, hence we have an injective map

µ∗ : C∞(M) ↪→ C∞(S), f 7→ f ◦ µ.

Denote by C∞
M (S) = µ∗(C∞(M)) the image of µ∗. Since we require our map µ to be Poisson,

injectivity of µ∗ implies that existence of π is equivalent to:

f, g ∈ C∞
M (S) implies {f, g} ∈ C∞

M (S).

Furthermore, since µ has connected fibres, we can write

C∞
M (S) = {f ∈ C∞(S) | df(V ) = 0 for all V ∈ Γ∞(ker dµ)},

i.e. any function f ∈ C∞
M (S) must be constant on the fibres of µ. For any f ∈ C∞

M (S),

0 = df(V ) = ω(Xf , V ) for all V ∈ Γ∞(ker dµ),

hence f ∈ C∞
M (S) if and only if Xf ∈ Γ∞((ker dµ)ω). Since X{f,g} = [Xf , Xg] for any f, g ∈

C∞(S), we see that the existence of π is equivalent to:

Xf , Xg ∈ Γ∞((ker dµ)ω) implies [Xf , Xg] ∈ Γ∞((ker dµ)ω). (8)

Now for this to hold, it is sufficient that (ker dµ)ω is an involutive distribution. To show that
this is also necessary, suppose (8) holds, so now we must check that

X,Y ∈ Γ∞((ker dµ)ω) implies [X,Y ] ∈ Γ∞((ker dµ)ω).

To see this, we first note that the map

Γ∞((ker dµ)ω)× Γ∞((ker dµ)ω)→ Γ∞
(

TS

(ker dµ)ω

)
(X,Y ) 7→ [X,Y ] mod (ker dµ)ω

is C∞(S)-bilinear (this holds for any subbundle of TS), hence corresponds to a unique bundle
morphism

ξ : (ker dµ)ω ⊕ (ker dµ)ω → TS

(ker dµ)ω
,
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which clearly vanishes if and only if (ker dµ)ω is involutive. So it suffices to show our claim
pointwise, i.e. that for any p ∈ S and v ∈ (ker dµp)

ω there is a function f ∈ C∞
M (S) with

v = Xf |p (indeed, condition (8) then implies that the bundle morphism ξ vanishes at p). To see
this, note that we have a composition of isomorphisms

(ker dµp)
ω ω♭

−→ (ker dµp)
◦ (dµp)∗←−−−− T ∗

µ(p)M (9)

where (ker dµp)
◦ = {α ∈ T ∗

pS | α(v) = 0 for all v ∈ ker dµp}. Under this isomorphism, v ∈
(ker dµp)

ω corresponds to dgµ(p) for some g ∈ C∞(M), and now f = µ∗g = g ◦µ has the desired
property v = Xf |p. ■

Remark 2.6. If µ : (S, ω) → (M,π) is a symplectic realization, then together with equation
(5), the last step in the proof shows

dµp((ker dµp)
ω) = im

(
π♯|µ(p)

)
,

so that the (regular) symplectic orthogonal distribution to ker dµ is pushed forward along µ to
the possibly singular distribution, consisting of Hamiltonian directions.

2.2 Infinitesimal actions of symplectic realizations

By Libermann’s theorem, a symplectic realization µ : (S, ω) → (M,π) comes with two distin-
guished involutive distributions on TS, the vertical distribution ker dµ and the orbit distribution
(ker dµ)ω. By Frobenius’ theorem, each of them is integrable, so they respectively give rise to a
vertical foliation and a orbit foliation of S.

The name “orbit” comes from the fact that it arises from the following action.

Definition 2.7. The infinitesimal action of a symplectic realization µ : (S, ω) → (M,π) is the
map a : Ω1(M)→ X1(S), defined by

ω(a(α), ·) = µ∗α.

Remark 2.8. In the case α = df for some f ∈ C∞(M), a(α) is just the Hamiltonian vector
field Xf◦µ on S.

Since this is a C∞-linear map in the sense that a(fα) = (f ◦ µ)a(α) for any f ∈ C∞(M),
this map defines a vector bundle morphism a : µ∗(T ∗M)→ TS.

To justify the nomenclature, we now show that on the level of sections, a is a Lie algebra
morphism, and that its image is the orbit distribution.

Proposition 2.9. The infinitesimal action a : Ω1(M) → X1(S) of a symplectic realization
µ : (S, ω)→ (M,π) is a morphism of Lie algebras, that is,

a([α, β]π) = [a(α), a(β)]

for any α, β ∈ Ω1(M). It satisfies the following properties at any p ∈ S:

(i) The map a lifts the map π♯, i.e. we have the following diagram:

TpS

T ∗
µ(p)M Tµ(p)M

dµp

π♯
µ(p)

ap

10



(ii) The map ap is injective.

(iii) The image of ap is the orbit distribution: im(ap) = (ker dµp)
ω.

(iv) The restriction of ap to kerπ♯
µ(p) is an isomorphism onto ker dµp ∩ (ker dµp)

ω.

Proof. We first prove the properties (i)-(iv). Property (i) holds since µ is a Poisson map, so we
may augment the above diagram to:

T ∗
pS TpS

T ∗
µ(p)M Tµ(p)M

dµp

π♯
µ(p)

ap
(dµp)∗

(ω♭
p)

−1

This also shows that ap = (ω♭
p)

−1 ◦ (dµp)
∗, which is a composition of an isomorphism with an

injective map (dµp)
∗ (since µ is a submersion), thus proving (ii). For (iii), observe that we have

im(ap) = (ω♭
p)

−1(im(dµp
∗)) = (ω♭

p)
−1((ker dµ)◦) = (ker dµ)ω,

as in the diagram (9). For (iv), note that since ap is injective by (ii), it maps kerπ♯
µ(p) bijectively

onto ker dµp ∩ im ap, so our wanted conclusion now follows from (iii).
To show a is a Lie algebra morphism, we consider the map A : Ω1(M)× Ω1(M)→ X1(S),

A(α, β) = a([α, β]π)− [aα, aβ].

We have to check that A = 0. To do so, first compute

A(α, fβ) = (f ◦ µ)a([α, β]π) + df(π♯α)aβ − (f ◦ µ)[aα, aβ]− d(f ◦ µ)(aα)aβ
)

where we have used a(fβ) = (f ◦ µ)aβ and Leibniz rule for both brackets. The second and
fourth term cancel out by (i), which can be written for 1-forms as µ∗ ◦ a = π♯. This implies that
A is C∞-linear in the second argument, but since A is alternating, this also holds for the first
argument. Hence it is enough to check that A(df,dg) = 0 for any f, g ∈ C∞(M), but this is
equivalent by Proposition 1.6 to

X{f,g}◦µ = [Xf◦µ, Xg◦µ],

which holds by Proposition 1.12 since µ is a Poisson map. ■
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3 Lie groupoids and algebroids

This section serves as an overview of the basics on Lie groupoids and algebroids.

3.1 Lie groupoids

Definition 3.1. A groupoid is a small category (i.e. the classes of its objects and morphisms
are sets) where every morphism is invertible. More precisely, a groupoid consists of:

(i) A set G of morphisms and a set M of objects.

(ii) Two maps s, t : G → M , called the source and target maps, which prescribe to any mor-
phism its domain and codomain (respectively),

(iii) A unit map u : M → G, which assigns to every object x ∈ M the identity morphism
u(x) = 1x = idx, and an inversion map inv : G → G, which assigns to any morphism
g ∈ G its inverse g−1.

(iv) A partial multiplication map m : G ∗G→ G, where G ∗G = {(g, h) ∈ G×G | s(g) = t(h)}
is the set of pairs of composable morphisms, which sends (g, h) ∈ G∗G to their composition
gh.

These maps must be such that, for any g, h, k ∈ G and x ∈M , there holds:

(i) s(gh) = s(h) and t(gh) = t(g), whenever s(h) = t(g)

(ii) s(1x) = t(1x) = x and g1s(g) = 1t(g)g = g,

(iii) for any g ∈ G there exists a unique g−1 ∈ G such that s(g−1) = t(g), t(g−1) = s(g),
g−1g = 1s(g) and gg−1 = 1t(g),

(iv) (gh)k = g(hk) whenever s(g) = t(h) and s(h) = t(k).

Given x ∈M , we also define s-fibre over x as Gx := s−1(x), t-fibre over x as Gx := t−1(x), and
the vertex group at x as Gx

x := Gx ∩Gx. Notice that the set of all morphisms from x to y is just
Gy

x := Gx ∩Gy. We will sometimes denote a morphism g ∈ Gy
x by g : x→ y.

A Lie groupoid is a groupoid with G and M smooth manifolds (G not necessarily Hausdorff),
such that the maps s, t are smooth submersions, and u, inv and m are smooth – we say that the
smooth structures on the groupoid are compatible with the groupoid structure.

Remark 3.2. We write G ⇒ M for a groupoid, to mean the whole structure:

G ∗G G M Gm

inv

s

t

u

It is necessary to note that in order for m : G ∗ G → G to be a smooth map, we must make
sense of the smooth structure on G ∗ G. To that end, we notice that G ∗ G = (s × t)−1(∆M ),
where ∆M = {(x, x) | x ∈M} ⊂M ×M is the diagonal, which is an embedded submanifold of
M ×M . To show G ∗ G is a smooth submanifold of G × G, we invoke transversality theorem;
we must show

d(s× t)(g,h)(TgG⊕ ThG) + T(x,x)∆M = T(x,x)(M ×M),

for any (g, h) ∈ G ∗G, or equivalently

dsg(TgG)⊕ dth(ThG) + {(v, v) | v ∈ TxM} = TxM ⊕ TxM,

12



but this clearly holds since s and t are submersions. Transversality theorem thus ensures that
G ∗G ⊂ G×G is an embedded submanifold of dimension dim(G ∗G) = 2 dimG− dimM , and
furthermore, that its tangent space at (g, h) ∈ G ∗G is given as

T(g,h)(G ∗G) = d(s× t)−1
(g,h)

(
T(x,x)

)
= {(v, w) ∈ TgG⊕ ThG | dsg(v) = dth(w)}. (10)

Example 3.3.

(i) Trivial groupoid. Let M be a smooth manifold and G a Lie group (G may not be acting on
M). We define the trivial groupoid M ×G×M ⇒ M with the product smooth structure,
and the groupoid structure given by:

• s and t are projections to the third and first factor (resp.),

• the unit map is given by 1x = (x, e, x) and inverse map by (y, g, x)−1 = (x, g−1, y),

• the partial multiplication is given by (z, h, y)(y, g, x) = (z, hg, x).

It is straightforward to check that the groupoid axioms are satisfied, and that the smooth
structure is compatible with the groupoid structure (it follows from that on G). Note that
in the case when M = {∗} is a singleton, we can identify {∗} × G × {∗} ⇒ {∗} with the
Lie group G, so that groupoids are a generalization of groups. In case G = {e} is a trivial
group, we call the obtained Lie groupoid a pair groupoid and just write M ×M ⇒ M .

(ii) Action groupoid. Let M be a smooth manifold and G a Lie group acting on it (from the
right). We define a Lie groupoid M × G ⇒ M by endowing it with the product smooth
structure, and the compatible groupoid structure given by:

• t(x, g) = x, s(x, g) = xg,

• the unit map is given by 1x = (x, e) and inverse map by (x, g)−1 = (xg, g−1),

• the partial multiplication is given by (x, g)(xg, h) = (x, gh).

We will write M ⋊G to mean the obtained Lie groupoid. It is easy to see that the t-fibres
are (M ⋊G)x = {x} ×G, that the s-fibre of M ⋊G at x may be identified with the orbit
OrbG(x), and that the vertex group (M ⋊G)xx = {(x, g) | xg = x} at x may be identified
with the stabilizer subgroup StabG(x) at x.

As a concrete example, the action of R on S1 given by (z, t) 7→ e2πitz, provides us
with a groupoid structure on the cylinder, with the t-fibre at z given by a vertical line
(S1 ⋊ R)z = {z} × R, the s-fibre at z given by (S1 ⋊ R)z = {(w, t) | e2πitw = z} (visually
depicted as a “spiral” on the cylinder), and (S1 ⋊R)zz = {z} × Z.

Note that in the case of a left action of G on M , the appropriate Lie groupoid is
G×M ⇒ M , with the structure maps given by s(g, x) = x, t(g, x) = gx, partial mul-
tiplication given by (h, gx)(g, x) = (hg, x) with the units 1x = (e, x) and the inverse
(g, x)−1 = (g−1, gx).

There are many more natural examples of Lie groupoids; among most important ones are
the so-called gauge groupoids, which capture the structure of principal bundles (in particular, a
fundamental groupoid is also a gauge groupoid).

3.2 Lie algebroids

Lie algebroids are vector bundles that possess a certain analogue of the usual Lie bracket. It
is customary to see them as “oidified” versions of Lie algebras. As we will see, such structures
naturally arise as infinitesimal counterparts of Lie groupoids.
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Definition 3.4. A Lie algebroid on a smooth manifold M is a vector bundle A→M , equipped
with a Lie bracket [·, ·] : Γ∞(A) × Γ∞(A) → Γ∞(A) and a morphism of vector bundles ρ : A →
TM , such that the following holds:‡

(i) ρ[α, β] = [ρα, ρβ], for all α, β ∈ Γ∞(A).

(ii) Leibniz rule. [α, fβ] = f [α, β] + ρ(α)(f)β, for all α, β ∈ Γ∞(A) and f ∈ C∞(M).

A morphism of Lie algebroids A → M and B → M is a vector bundle morphism Φ: A → B,
such that:

(i) Φ preserves Lie brackets, i.e. Φ([α, β]A) = [Φα,Φβ]B for all α, β ∈ Γ∞(A).

(ii) Φ preserves anchor maps, i.e. ρB ◦ Φ = ρA.

Example 3.5.

(i) Two trivial examples of Lie algebroids are the tangent bundle (TM, [·, ·], idTM ) of a smooth
manifold M , and a Lie algebra, which is just the Lie algebroid over a singleton, with anchor
equal to zero.

(ii) Proposition 1.6 shows that any Poisson manifold (M,π) gives rise to a Lie algebroid
(T ∗M, [·, ·]π, π♯), called the Poisson algebroid of (M,π).

Furthermore, Proposition 2.9 suggests the following definition, making the infinitesimal ac-
tion of any symplectic realization an example thereof.

Definition 3.6. An action of a Lie algebroid A → M on a smooth map µ : S → M is a Lie
algebra morphism a : Γ∞(A)→ X(S), such that:

(i) a is C∞-linear, i.e. a(fα) = (f ◦ µ)a(α) for all α ∈ Γ∞(A) and f ∈ C∞(M).

(ii) a lifts the anchor, i.e. dµp(a(α)) = ρ(α)µ(p) for any α ∈ Γ∞(A) and p ∈ S.

3.3 The Lie algebroid of a Lie groupoid

To “oidify” the construction of a Lie algebra on a Lie group, we recall that the latter is defined
as the set

XL(G) = {X ∈ X(G) | (Lg)∗X = X for all X ∈ G},

of all left-invariant vector fields on G and accompanied with the Lie bracket. We also have a

canonical isomorphism XL(G)→ TeG = g, X 7→ Xe, with inverse Xe 7→ (g
X7→ d(Lg)e(Xe)).

Definition 3.7. A left-invariant vector field on a Lie groupoid G ⇒ M is a vector field X ∈
X(G) that satisfies the following:

(i) X is tangent to t-fibres, i.e. X ∈ Γ∞(ker dt).

(ii) d(Lg)h(Xh) = Xgh for all (g, h) ∈ G ∗G.

The set of all left-invariant vector fields on G ⇒ M is denoted by XL(G).

The following is an “oidified” version of the result for Lie algebras of Lie groups.

‡It is left to the reader as an exercise to show that the property (i) in the definition of a Lie algebroid is
actually redundant, as it is a consequence of Jacobi identity and Leibniz rule.
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Lemma 3.8. On any Lie groupoid G ⇒ M , the set XL(G) is closed under the Lie bracket on
X(G). As a vector space, it is isomorphic to the space of sections Γ∞(A(G)) of the vector bundle
A(G) = ker(dt)|u(M) over u(M) ≈M .

Proof. For the first part, first note that if X and Y are tangent to t-fibres, then so is [X,Y ];
furthermore, note that for any g : x → y, the map Lg : G

x → Gy is a diffeomorphism, and that
left-invariance ofX just means thatX|Gx is Lg-related toX|Gy , and similarly for Y . This implies
that [X,Y ]|Gx is Lg-related to [X,Y ]|Gy , i.e. d(Lg)h([X,Y ]h) = [X,Y ]gh for all (g, h) ∈ G ∗G.

For the second part, the isomorphism reads

XL(G)→ Γ∞(A(G)), X 7→ X|u(M),

and its inverse is given by α 7→ Xα, where Xα
g = d(Lg)1s(g)(α1s(g)). Smoothness of Xα follows

from a straightforward verification that there holds Xα = dm ◦ τα, where τα : G→ T (G ∗G) is
given by τα(g) = (0g, α1s(g)). ■

This lemma now allows us to transfer the Lie bracket from XL(G) to Γ∞(A(G)), by defining
it as the map Γ∞(A(G))× Γ∞(A(G))→ Γ∞(A(G)), (α, β) 7→ [α, β], where

[α, β]x := [Xα, Xβ]1x for any x ∈M.

This map obviously satisfies all the axioms of a Lie bracket, since the Lie bracket on X(G) does.
We establish more of its properties by observing that we may also define the anchor of A(G),

which is a vector bundle morphism

ρ : A(G)→ TM, ρ = ds|A(G),

i.e. ρ(α) = ds1x(α) for any α ∈ ker dt1x .

Proposition 3.9. On any Lie groupoid G ⇒ M , the anchor ρ : A(G)→ TM satisfies:

(i) ρ[α, β] = [ρα, ρβ] for all α, β ∈ Γ∞(A(G)).

(ii) Leibniz rule: [α, fβ] = f [α, β] + ρ(α)(f)β for all α, β ∈ Γ∞(A(G)) and f ∈ C∞(M).

Proof. We first prove (i). The left-invariant vector field Xα is s-related to ρα, since

dsg(X
α
g ) = d(s ◦ Lg)1s(g)(α1s(g)) = ρ(α1s(g)),

and similarly for β, hence also [ρα, ρβ] is s-related to [Xα, Xβ], that is,

dsg([X
α, Xβ]g) = [ρα, ρβ]s(g).

Now take g = 1x.
To prove (ii), note that Xfα

g = d(Lg)1s(g)(f(s(g))α1s(g)) =
(
(f ◦ s)Xα

)
|g, so there holds

Xfα = (f ◦ s)Xα. Now we take the left-invariant vector field which corresponds to [α, fβ]:

X [α,fβ] = [Xα, Xfβ ] = [Xα, (f ◦ s)Xβ]

= (f ◦ s)[Xα, Xβ] +Xα(f ◦ s)Xβ

= X(f◦s)[α,β] +Xρ(α)(f)β

= X(f◦s)[α,β]+ρ(α)(f)β,

where we have used the usual Leibniz rule in the second line and the equality Xα(f ◦ s) =
ds(Xα)(f) in the third. By previous lemma, finishes the proof. ■
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Remark 3.10. We thus see that if G ⇒ M is a Lie groupoid, the triple (A(G), [·, ·], ρ) as defined
above, is a Lie algebroid. We call it the Lie algebroid of G ⇒ M .

Example 3.11.

(i) Lie algebroid of pair groupoid. The Lie algebroid A(M×M) of the groupoid M ×M ⇒ M
can be identified with the tangent bundle TM → M . To see this, note that ker dt(x,x) =
0x ⊕ TxM , thus ker dt|u(M) = 0 ⊕ TM , and ρ = ds|0⊕TM = d(pr2)|0⊕TM , so this is just
the projection 0 ⊕ TM → TM , which we identify with idTM . That the bracket can be
identififed with the Lie bracket on TM is also a triviality.

(ii) Action algebroid. If a Lie group G acts on M from the right, we get a map a : g→ X(M),

a(v)(x) =
d

dλ

∣∣∣∣
λ=0

(x · exp(λv))

which is a homomorphism of Lie algebras. The action Lie algebroid is defined to be the
trivial bundle M × g→M , hence Γ∞(M × g) = C∞(M, g). The anchor of this algebroid
is defined to be ρ(x, v) = a(v)(x) and the Lie bracket [·, ·] as

[f, g](x) = [f(x), g(x)]g + dgx(a(f(x)))− dfx(a(g(x))),

i.e. the unique Lie bracket on Γ∞(M×g) satisfying Leibniz rule and the equality [cv, cw] =
c[v,w]g , where cv denotes the constant map into v ∈ g.

Let us show that this is in fact the Lie algebroid of M ⋊G ⇒ M . First off, notice that
ker dt(x,e) = 0x ⊕ TeG = 0x × g, thus A(M ⋊G) = ker dt|u(M) = M × g. The anchor reads

ds|M×g(0x, v) =
d

dλ

∣∣∣∣
λ=0

t(x, exp(λv)) = a(v, x),

and the Lie bracket on A(M ⋊G) on constant maps reads

[cv, cw]|(x,e) = [Xcv , Xcw ]|(x,e) = Xc[v,w]g |(x,e) = c[v,w]g |(x,e),

where we have used the definition Xcv |(x,g) = d(L(x,g))(xg,e)(v) of a left-invariant vector
field, and used the result regarding relatedness and Lie brackets. Thus the bracket on
A(M ⋊G) coincides with the bracket on the action algebroid (by uniqueness).
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4 Symplectic groupoids

To introduce the notion of a symplectic groupoid, we first consider what it means for a differential
form to be compatible with groupoid structure.

4.1 Multiplicative forms on Lie groupoids

To motivate the definition of multiplicative forms on a Lie groupoid G ⇒ M , let us first consider
a 0-form f ∈ C∞(G). We say that the function f is multiplicative, if there holds

f(gh) = f(g) + f(h)

for any composable arrows g, h ∈ G. Put another way, f : G → (R,+) is a morphism of
groupoids; the reason behind working with (R,+) instead of (R\{0}, ·) is in that we are allowing
f to have zeros. Denoting by pr1,pr2 : G ∗G→ G the restriction of projections G×G→ G, the
above equality may be written as

m∗f = f ◦m = f ◦ pr1 + f ◦ pr2 = pr∗1f + pr∗2f.

This condition now makes sense for differential forms of arbitrary degree.

Definition 4.1. A multiplicative k-form on a Lie groupoid G ⇒ M is a differential k-form
ω ∈ Ωk(G), such that

m∗ω = pr∗1ω + pr∗2ω.

Lemma 4.2. Let k ≥ 1. For any multiplicative k-form ω ∈ Ωk(G) on a Lie groupoid G ⇒ M ,
there holds

d(Lg)h
∗(ω|ker dtgh) = ω|ker dth ,

d(Rh)g
∗(ω|ker dsgh) = ω|ker dsg ,

for any composable arrows (g, h) ∈ G ∗G.

Remark 4.3. These equalities are saying in a precise way that there holds “(Lg)
∗ω = ω”

and “(Rh)
∗ω = ω” wherever the pullbacks make sense – we have to keep in mind that the

diffeomorphisms Lg : G
s(g) → Gt(g) and Rh : Gt(h) → Gs(h) are not globally defined maps.

Proof. We only prove the second identity; the proof of the first one is similar. If v ∈ TgG, we
have d(Rh)g(v) = dm(g,h)(v, 0h). On the other hand, multiplicativity of ω implies

(m∗ω)(g,h)((v1, 0h), . . . , (vk, 0h)) = ωg(v1, . . . , vk),

for all vi ∈ TgG, so we must have

ωgh(d(Rh)g(v1), . . . ,d(Rh)g(vk)) = ωg(v1, . . . , vk),

To conclude, just note that since Rh : Gt(h) → Gs(h) is a diffeomorphism, the induced map of
tangent spaces d(Rh)g : ker dsg → ker dsgh is an isomorphism. ■

An important point of view for multiplicativity of differential forms on G is the following
cohomological condition. We have the maps

δ1 : Ωk(G)→ Ωk(G ∗G), δ1ω = pr∗1ω −m∗ω + pr∗2ω,

δ0 : Ωk(M)→ Ωk(G), δ0α = s∗α− t∗α.
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Observe that ω ∈ Ωk(G) is multiplicative if and only if it is a cocycle, i.e. δ1ω = 0. Furthermore,
δ1 ◦ δ0 = 0 holds, since:

δ1δ0α = δ1(s∗α− t∗α) = pr∗1(s
∗α)−m∗(s∗α) + pr∗2(s

∗α)

− pr∗1(t
∗α) +m∗(t∗α)− pr∗2(t

∗α),

and now observe that the first and last term cancel out since t ◦ pr2 = s ◦ pr1, second and third
term cancel out since s◦m = s◦pr2, and the remaining two terms cancel out since t◦pr1 = t◦m.
This shows that the coboundaries δ0α, for any α ∈ Ωk(M), are multiplicative forms on G.

4.2 Multiplicative symplectic structures

Definition 4.4. A symplectic groupoid is a Lie groupoid Σ ⇒ M together with a multiplicative
symplectic form Ω ∈ Ω2(Σ).

In what follows, we will use the letter Σ to distinguish symplectic groupoids from ordinary
Lie groupoids, and denote by Ω the multiplicative symplectic form on Σ.

Example 4.5.

(i) Symplectic manifolds induce a symplectic pair groupoid. If (M,ω) is a symplectic manifold,
then the pair groupoid Σ = M ×M ⇒ M is a symplectic groupoid with the multiplicative
symplectic form given as

Ω = pr∗1ω − pr∗2ω = −δ0ω.

This form is indeed closed since exterior derivative commutes with pullbacks, and it is a
symplectic form since

Ω2n =
2n∑
k=0

(
2n

k

)
(pr∗1ω)

k ∧ (−pr∗2ω)2n−k = (−1)n
(
2n

n

)
(pr∗1ω)

n ∧ (pr∗2ω)
n

vanishes nowhere.

(ii) Canonical symplectic forms on cotangent bundles are multiplicative. If M is a smooth
manifold, the cotangent bundle T ∗M admits a structure of a symplectic groupoid. To first
see that it admits a structure of a Lie groupoid, declare both the source and the target map
as the canonical projection p : T ∗M →M , and let multiplication m : T ∗M⊕T ∗M → T ∗M
in this groupoid be given as addition m(α, β) = α + β (on the fibres), with the obvious
inversion and unit; the structure maps are then clearly smooth.

To see that the canonical symplectic structure on T ∗M is multiplicative, consider
the tautological 1-form τ ∈ Ω1(T ∗M). We claim that it is multiplicative, and to show
this, we first let pr1, pr2 : T

∗M ⊕ T ∗M → T ∗M denote the projections. Let (v, w) ∈
T(α,β)(T

∗M ⊕ T ∗M) where p(α) = p(β) = x ∈ M , and by (10), we must have dpα(v) =
dpβ(w) =: u ∈ TxM . Since the tautological 1-form reads τξ = ξ ◦ dpξ for any ξ ∈ T ∗M ,
we get

τα+β(dm(α,β)(v, w)) = (α+ β)(d(p ◦m)(α,β)(v, w)) = (α+ β)(dpα(v)) = (α+ β)(u)

= α(u) + β(u) = α(dpα(v)) + β(dpβ(w))

= τα(d(pr1)(α,β)(v, w)) + τβ(d(pr1)(α,β)(v, w)),

proving m∗τ = pr∗1τ + pr∗2τ . It is clear from this that the canonical symplectic structure
ω = −dτ is multiplicative with respect to the given Lie groupoid structure on T ∗M .
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(iii) Coadjoint action groupoid is symplectic. Let G be a Lie group and let Σ = G× g∗ ⇒ g∗

be the action groupoid of the left action g · ξ = Ad∗gξ of G on g∗, where (Ad∗gξ)(v) =
ξ(Adg−1(v)) for any v ∈ g. This is called the coadjoint action of G on g∗.

Note that we have the isomorphism T ∗G ∼= G× g∗ of vector bundles, given by

ℓ : T ∗G→ G× g∗ = Σ, T ∗
gG ∋ α 7→ (g, α ◦ d(Lg)e),

and now we consider the 2-form

Ω := −ℓ∗ω = d(ℓ∗τ)

on Σ, where ω = −dτ denotes the canonical symplectic form on T ∗G, τ is the tautological
1-form on T ∗G, and we write ℓ∗ = (ℓ−1)∗. To show that ℓ∗τ is multiplicative, we note it
is pointwise given as the map (ℓ∗τ)(g,ξ) : T(g,ξ)(G× g∗)→ R,

(ℓ∗τ)(g,ξ)(v, η) = ξ(d(Lg−1)g(v)) for any v ∈ TgG and η ∈ g∗ ∼= Tξg
∗.

To see this, define the right hand side as θ(g,ξ)(v, η), so that θ ∈ Ω1(Σ), and compute at
any α ∈ T ∗

gG, for any u ∈ Tα(T
∗G):

(ℓ∗θ)α(u) = θℓ(α)(dℓα(u)) = (α ◦ d(Lg)e)(d(Lg−1)g(d(pr1 ◦ ℓ)α(u)))
= α(dpα(u)) = τα(u)

where pr1 : G × g∗ is the projection onto the first factor, and we have used pr1 ◦ ℓ = p.
This shows ℓ∗θ = τ , hence ℓ∗τ = θ, as claimed.

So we must show that θ is multiplicative. To that end, we identify Σ∗Σ with G×G×g∗,
using the bijection ((g,Ad∗hξ), (h, ξ))↔ (g, h, ξ). That way, our partial multiplication reads
m(g, h, ξ) = (gh, ξ) and the projection maps pr1, pr2 : G×G× g∗ → G× g∗ read

pr1(g, h, ξ) = (g,Ad∗hξ), pr2(g, h, ξ) = (h, ξ).

Lastly, we compute

(m∗θ)(g,h,ξ)(v, w, η) = ξ
(
d(L(gh)−1)gh(d(Rh)g(v) + d(Lg)h(w))

)
= ξ(Adh−1(d(Lg−1)g(v)) + d(Lh−1)h(w))

where we have computed L(gh)−1 ◦Rh = Ch−1 ◦ Lg−1 . On the other hand, we have

(pr∗1θ)(g,h,ξ)(v, w, η) = θ(g,Ad∗hξ)
(d(pr1)(g,h,ξ)(v, w, η)) = (Ad∗hξ)(d(Lg−1)g(v))

= ξ(Adh−1(d(Lg−1)g(v)))

and (pr∗2θ)(g,h,ξ)(v, w, η) = θ(h,ξ)(d(pr2)(g,h,ξ)(v, w, η)) = ξ(d(Lh−1)h(w)). Hence

m∗θ = pr∗1θ + pr∗2θ,

so θ is multiplicative, as claimed.
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4.3 Geometric interpretations of multiplicativity

We now come to the very important geometric consequences of multiplicativity of a symplectic
form. In what’s to come, we will also see that existence of a multiplicative symplectic structure
imposes dimensional restrictions on a Lie groupoid.

Lemma 4.6. A differential 2-form Ω ∈ Ω2(G) on a Lie groupoid G is multiplicative if and only
if the graph

Γ(m) = {(g, h, gh) | (g, h) ∈ G ∗G} ⊂ Σ× Σ× Σ

of the partial multiplication map m, is isotropic in (G,Ω) × (G,Ω) × (G,−Ω), i.e. the form
Ω⊕ Ω⊕ (−Ω) restricted to Γ(m) vanishes.

Proof. Defining the map ϕ : G ∗G→ G×G×G as

ϕ(g, h) = (g, h, gh) = (pr1(g, h), pr2(g, h),m(g, h)),

we see that Γ(m) is the image of ϕ, and we clearly have

ϕ∗(pr∗1Ω+ pr∗2Ω− pr∗3Ω) = pr∗1Ω+ pr∗2Ω−m∗Ω,

where we note that the projections pri : G×G×G→ G on the left side differ from those on the
right side, and m = pr3 ◦ ϕ. Since ϕ is an immersion, we must have

pr∗1Ω+ pr∗2Ω− pr∗3Ω = 0 if and only if m is multiplicative. ■

Proposition 4.7. A symplectic form Ω ∈ Ω2(G) on G ⇒ M is multiplicative if and only if the
graph

Γ(m) ⊂ G×G×G

of partial multiplication map, is a Lagrangian submanifold. Moreover, any symplectic groupoid
(Σ,Ω) has the following properties:

(i) t-fibres and s-fibres are symplectic orthogonal, i.e.

(ker dt)Ω = ker ds.

(ii) The unit map u : M → Σ is a Lagrangian embedding, i.e.

(TM)Ω = TM.

(iii) Inversion inv : Σ→ Σ is an antisymplectomorphism, i.e.

inv∗Ω = −Ω.

In particular, dimΣ = 2dimM.

Proof. If the graph Γ(m) is Lagrangian, the last lemma shows that Ω is multiplicative. Con-
versely, suppose (Σ,Ω) is a symplectic groupoid. For the first part, it is enough to show
that dimΣ = 2dimM , since it then follows that dimΓ(m) = 2 dimΣ − dimM = 3dimM =
1
2 dim(Σ× Σ× Σ), so again by the last lemma, Γ(m) is Lagrangian.

We first show that u∗Ω = 0; pulling back the multiplicativity condition along the map
ū : M → Σ ∗ Σ, ū(x) = (u(x), u(x)), yields

0 = ū∗δΩ = ū∗pr∗1Ω− ū∗m∗Ω+ ū∗pr∗2Ω = u∗Ω− u∗Ω+ u∗Ω = u∗Ω,
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where we’ve observed pr2 ◦ ū = pr1 ◦ ū = m ◦ ū = u. This means that u(M) is an isotropic
submanifold in Σ.

Secondly, we show that inversion is an antisymplectomorphism; defining the map ∆: Σ →
Σ ∗ Σ,∆(g) = (g, g−1), noting m ◦∆ = u, and using the equation u∗Ω = 0, yields

0 = u∗Ω = ∆∗m∗Ω = ∆∗(pr∗1Ω+ pr∗2Ω) = Ω + inv∗Ω,

where we’ve observed pr1 ◦ ∆ = idG and pr2 ◦ ∆ = inv. This proves (iii), and now note that
the fixed point set of any involutive antisymplectomorphism is a coisotropic submanifold (see
lemma after the proof), and u(M) ⊂ Fix(inv), hence u(M) is coisotropic. Together with the
previous paragraph, this shows that u(M) is a Lagrangian submanifold in Σ, which shows (ii)
and proves the dimension correspondence dimΣ = 2dimM .

Finally, to prove (i), by the dimensionality, it’s enough to show Ω(v, w) = 0 holds for any
v ∈ ker dsg and w ∈ ker dtg, since this implies ker dt ⊂ (ker ds)Ω and ker ds ⊂ (ker dt)Ω and
both subbundles ker ds and ker dt of TΣ have rank dimM since s and t are submersions. To do
that using multiplicativity of Ω, we would like to rewrite v, w as pushforwards by m. Note that
v ∈ ker dsg implies (v, 01s(g)) ∈ T(g,1s(g))(Σ ∗ Σ) by formula (10), and clearly

v = d(R1s(g))g(v) = dm(g,1s(g))(v, 01s(g)).

On the other hand, note that w ∈ ker dtg implies (0g, w0) ∈ T(g,1s(g))(Σ ∗ Σ) where we have

written w0 = d(Lg−1)g(w), and similarly to above,

w = dm(g,1s(g))(0g, w0).

Hence

Ω(v, w) = Ω(dm(v, 01s(g)),dm(0g, w0))

= Ω(d(pr1)(v, 01s(g)),d(pr1)(0g, w0)) + Ω(d(pr2)(v, 01s(g)),d(pr2)(0g, w0)) = 0. ■

Lemma 4.8. Let (M,ω) be a symplectic manifold. If ϕ : M →M is an involutive antisymplec-
tomorphism, i.e. ϕ2 = idM and ϕ∗ω = −ω, then its fixed point set is a coisotropic submanifold.

Proof. Denote the fixed point set of ϕ by F = {x ∈M | ϕ(x) = x}. This is a submanifold in M ,
and at any point x ∈ F , its tangent space reads TxF = {v ∈ TxM |F | dϕx(v) = v}. Since ϕ is
involutive, we have (dϕx)

2 = idTxM , so TxM decomposes to (±1)-eigenspaces, denoted (TxM)±;
observe that (TxM)+ = TxF . On the other hand, we also have (dϕ∗

x)
2 = idT ∗

xM , so that T ∗
xM

also decomposes to (±1)-eigenspaces, denoted (T ∗
xM)±; now observe that

(T ∗
xM)− = {ξ ∈ T ∗

xM | ξ ◦ dϕx = −ξ} = {ξ ∈ T ∗
xM | ξ(v) = 0 for all v ∈ TxF} = (TxF )◦

Take the nondegenerate Poisson structure π♯ = (ω♭)−1, associated to ω. Since ϕ is an antisym-
plectomorphism, we have by Proposition 1.12 that

−π♯
x = dϕx ◦ π♯

x ◦ (dϕx)
∗,

which implies that for any α ∈ (T ∗
xM)−, we have π♯

x(α) ∈ (TxM)+, which is equivalent to
(ω♭)−1((TxF )◦) ⊂ TxF , and furthermore to (TxF )ω ⊂ TxF , which is what we wanted. ■
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4.4 Interplay of symplectic groupoids and Poisson manifolds

We now have all the tools to prove the most insightful result of this exposition, the proof of
which, being straightforward albeit abstract, shows that symplectic groupoids have an important
place in Poisson geometry.

Theorem 4.9. Let Σ ⇒ M be a symplectic groupoid. There is a unique Poisson structure π
on M , such that t : (Σ,Ω)→ (M,π) is a Poisson map. Moreover,

(i) t : Σ → M is a complete symplectic realization, i.e. for any complete Hamiltonian vector
field Xf ∈ X1(M), the Hamiltonian vector field Xf◦t ∈ X1(Σ) is also complete.

(ii) There is a canonical isomorphism of Lie algebroids

σΩ : A(Σ)→ T ∗M, σΩ(α) = −u∗(Ω♭(α)).

In particular, π♯ = ρ ◦ σ−1
Ω , where ρ denotes the anchor of A(Σ).

(iii) The infinitesimal action of the symplectic realization t : Σ→M is given by

a : Ω1(M)→ X1(Σ), a(σΩ(α)) = Xα,

where Xα is the left-invariant vector field that corresponds to α ∈ Γ∞(A(Σ)).

Remark 4.10. Among the properties of t : (Σ,Ω)→ (M,π) is also the fact that the symplectic
leaves of (M,π) are the connected components of orbits of Σ, which we will not prove.

Proof. Let us show that the target map t pushes forward the inverse (Ω♭)−1 of the isomorphism
Ω♭ : TΣ→ T ∗Σ, to a bivector π on M ; recall Ω♭ is given by v 7→ Ω(v, ·).

We define π in the following way. Fix x ∈ M , and let g ∈ Gx be an arbitrary arrow in G
with target x; then define the map (πg

x)♯ : T ∗
xM → TxM using the following composition:

T ∗
gΣ TgΣ

T ∗
xM TxM

(πg
x)

♯

(dtg)∗ dtg

(Ω♭
g)

−1

This map is independent of the choice of g ∈ Gx. Indeed, note that if h ∈ Gx is another arrow,
then we must have h = gk for some k ∈ G, namely k = g−1h, and now

dth = dtgk = d(t ◦Rk−1)gk = dtg ◦ d(Rk−1)h,

so that (dth)
∗ = d(Rk−1)h

∗ ◦ (dtg)∗, and we get

(πh
x)

♯ = dtg ◦ d(Rk−1)h ◦ (Ω♭
h)

−1 ◦ d(Rk−1)h
∗ ◦ (dtg)∗,

but d(Rk−1)h ◦ (Ω♭
h)

−1 ◦ d(Rk−1)h
∗ = (Ω♭

g)
−1 holds by multiplicativity of Ω. Indeed, note that

this is a composition of isomorphisms, since d(Rk−1)h : ker dsh → ker dsg is an isomorphism;
thus it suffices to check the inverse of the wanted equality, which is

d(Rk)h
∗ ◦ Ω♭

h ◦ d(Rk)h = Ω♭
g,

and this is precisely the second equality in Lemma 4.2.
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To show that the obtained bivector field π is indeed a Poisson structure, we just note that
the Libermann’s theorem now applies locally, because (ker dt)Ω = ker ds is clearly an integrable
distribution; hence by uniqueness in Libermann’s theorem, π is necessarily smooth and Poisson,
and the target map is its symplectic realization.

Next, we have to check that σΩ is a isomorphism of Lie algebroids; denote the Lie algebroid
of Σ by (A, [·, ·]A, ρ). First, we show that σρ is pointwise an isomorphism of vector spaces.
To show this, note that§ TxM ⊂ Tu(x)Σ is a Lagrangian subspace by Proposition 4.7, so it is
precisely the kernel of the map

Tu(x)Σ→ T ∗
xM, v 7→ −Ω(v, ·)|TxM = −Ω♭(v)|TxM .

Because Tu(x)Σ = TxM ⊕ Ax and Ω is nondegenerate, this map restricts to an isomorphism
Ax → T ∗

xM . Up to the identification M ≈ u(M) with respect to the embedding u, this is
precisely the map σΩ|x, hence σΩ is an isomorphism of vector bundles (any smooth morphism
of vector bundles that is fibrewise an isomorphism, is an isomorphism of vector bundles).

To show that σΩ is a morphism of Lie algebroids, it is enough to show that it preserves the
Lie brackets,¶ and to this end we inspect the infinitesimal action of the obtained symplectic
realization; its definition in our case reads

a : Ω1(M)→ X1(Σ), Ω♭ ◦ a = t∗.

As in property (iii) of the theorem, we claim a(σΩ(α)) = Xα for any α ∈ Γ∞(A), so we must
prove Ω♭(Xα) = t∗(σΩ(α)), or equivalently (since inv is an antisymplectomorphism),

Ω♭(Xα) = −s∗(σΩ(α)), (11)

where Xα denotes the left-invariant vector fields associated to α, i.e.

Xα|g = d(Lg)1s(g)(α1s(g)) = dm(g,1s(g))(0g, α1s(g)).

To evaluate both sides on a vector v ∈ TgΣ, note that we can write

v = dm(g,1s(g))(v,dus(g) dsg(v))

since Lg ◦ u ◦ s is a constant map into g. Hence left hand side of (11) is

Ωg(X
α|g, v) = Ωg

(
dm(g,1s(g))(0g, α1s(g)),dm(g,1s(g))(v,dus(g) dsg(v))

)
= �����Ωg(0g, v) + Ω1s(g)(α1s(g) , dus(g) dsg(v)),

and the right hand side, with indices left out, is

−s∗(σΩ(α))(v) = −σΩ(α)(ds(v)) = u∗(Ω♭(α))(ds(v)) = Ω(α,du(ds(v))),

hence our claim holds. Since the infinitesimal action preserves brackets by Proposition 2.9, and
the bracket on A comes from the bracket of left-invariant vector fields, σΩ also preserves Lie
brackets.

§We are identifying M ≈ u(M).
¶An isomorphism of vector bundles A → B that preserves Lie brackets must preserve anchors as well; this

follows from the fact that if [·, ·] is a Lie bracket on the sections of a vector bundle A, there is at most one anchor
on A making it into a Lie algebroid, which is a simple consequence of the Leibniz rule.
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To conclude, we have to prove completeness of our symplectic realization; again, it is equiv-
alent to prove that the symplectic realization s : (Σ,−Ω) → (M,π) is complete. So, suppose
Xf ∈ X(M) is a complete Hamiltonian vector field of f ∈ C∞(M). We define α = σ−1

Ω (df), and
by (11), we have

Ω♭(Xα) = −d(f ◦ s),

implying that Xα is the Hamiltonian vector field of f ◦ s on (Σ,−Ω). Since

Xf = π♯(df) = ρ(σ−1
Ω (df)) = ρ(α)

is a complete vector field, so is Xα, by [1, Proposition 13.34]. ■

In the next section, we will try to realize several Poisson manifolds as the base space of some
symplectic groupoid. To do so, we will now prove that if a groupoid structure on a symplectic
realization exists, it must be unique. The useful and important thing about the proof of this
fact, is that it gives us a recipe on how to construct the groupoid structure, if we are given a
symplectic realization. The existence part takes a lot more work, so we omit it, and direct the
reader to [1, Chapter 14].

Theorem 4.11. Let µ : (S,Ω) → (M,π) be a symplectic realization of a Poisson manifold
M , with connected µ-fibres, and let u : M → S be a Lagrangian section of µ, i.e. u(M) is a
Lagrangian embedding of M into S, and µ ◦ u = idM . There is at most one groupoid structure
on S, such that (S,Ω) ⇒ M is a symplectic groupoid with target map µ and the unit map u.
Moreover, such a groupoid structure exists if and only if the following holds:

(i) The symplectic realization is complete.

(ii) Each leaf of the foliation of the orthogonal distribution (ker dµ)Ω intersects u(M) at pre-
cisely one point.

Proof. First off, we mention that the condition (i) is clearly necessary for the existence of the
symplectic groupoid structure on S, by previous theorem.

Now suppose such a symplectic groupoid structure on S exists, and note that the target
map is necessarily t = µ by assumption. Furthermore, t-fibres are connected, and s-fibres must
also be connected since s−1(x) = inv−1(t−1) = inv(t−1(x)) is the image of a connected space
along a continuous map. Since ker ds = (ker dt)Ω, s-fibres must be the leaves of foliation of the
orbit distribution (ker dt)Ω, and this determines s entirely. The section u : M → S of t is also a
section of s, since

x = t(u(x)) = s(inv(u(x))) = s(u(x)),

and so each fibre s−1(x) of s intersects u(M) at precisely one point, proving that condition (ii)
is also necessary for existence of the groupoid structure.

We already have uniqueness of t = µ, s, u. To show that multiplication is uniquely defined,
note that the other structure maps determine the Lie algebroid

A := u∗(ker dµ),

and also the Lie algebroid isomorphism

σΩ : A→ T ∗M, α 7→ −u∗(Ω♭(α)).
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The equation Ω♭(Xα) = −s∗(σΩ(α)) now determines left-invariant vector fields on S, and we
can use this to write down the multiplication map, using their flows:‖

ϕXα

λ (g) = Lg(ϕ
Xα

λ (1s(g))),

that is, for any g ∈ G, there holds

m
(
g, ϕXα

λ (1s(g))
)
= ϕXα

λ (g).

Now note that ϕXα

λ (1s(g)) is defined for all λ in some open inteval JXα

s(g) around zero, and hence
the above formula determines multiplication on

S ∗ U = {(g, h) ∈ G× U | s(g) = t(h)},

where U is an open neighborhood of u(M),

U = {ϕXα

λ (1x) | α ∈ Γ∞(A), λ ∈ JXα

x , x ∈M}.

Since t-fibres are connected by assumption, the multiplication on the whole groupoid is deter-
mined by multiplication on U , as the next lemma proves. ■

Lemma 4.12. Let G ⇒ M be a Lie groupoid with connected t-fibres, and U an open neigh-
borhood of u(M). Any element of G can be written as a finite product of elements in U .

Proof. Denote V 1
x = Gx ∩ U , and for any n ≥ 2,

V n
x =

⋃
g∈Gx

Lg

(
V n−1
s(g)

)
.

An induction argument shows that the set V n
x is open in Gx for any n ∈ N, since Lg : G

s(g) →
Gt(g) is a diffeomorphism for any g ∈ G. Clearly, Vx := ∪n∈NV n

x is the set of all elements in Gx

that can be written as a product of finitely many elements from U , and this set is open in Gx.
To see that its complement is open in Gx, note that if g /∈ Vx, then gU−1 := {gu−1 | s(u) =

s(g), u ∈ U} is a neighborhood of g in Gx, which does not intersect Vx, for if it did, there would
exist a u ∈ U such that gu−1 ∈ V n

x for some n ∈ N, and then we would have g = u1 . . . unu for
some ui ∈ U , contradicting g /∈ Vx.

So Vx is open and closed in Gx, hence by assumption of t-connectedness, Vx = Gx. ■

Remark 4.13. To conclude this section, let us note that the deepest results in the theory of
symplectic groupoids in Poisson geometry are those which concern integrability. That is, given
a Poisson manifold (M,π), when is it possible to construct the symplectic groupoid that is its
symplectic realization? If the Lie algebroid (T ∗M, [·, ·]π, π♯) is integrable,∗∗ then by Lie’s first
theorem, we can find a Lie groupoid Σ ⇒ M with simply connected t-fibres, such that there is
an isomorphism A(Σ)

σ→ T ∗M of Lie algebroids. The result by Mackenzie and Xu [1, Theorem
14.29] shows that in this case, there is a unique multiplicative symplectic form Ω ∈ Ω2(Σ), with
the property that the isomorphism σΩ as in Theorem 4.9, equals σ.

‖To see that the equation for the flow of Xα holds, note that it is not hard to show that if γXα

1x denotes the

integral path of Xα starting at 1x, then Lg ◦ γXα

1x is the integral path of Xα starting at g (provided s(g) = x),
and thus uniqueness of integral paths guarantees the wanted equality.

∗∗A deep result by Crainic and Fernandes is that this is the case precisely when the monodromy groups are
uniformly discrete. For details, see [2].
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4.5 Examples of symplectic groupoid realizations of Poisson manifolds

In this last section, we will first provide symplectic groupoid realizations of the standard nonde-
generate Poisson structure on R2n, and the zero Poisson structure. After that, we will construct
two nontrivial examples, using the recipe provided by the proof of Theorem 4.11.

Example 4.14 (Symplectic manifolds). Recall from Example 4.5 (i) that, given a symplectic
manifold (M,ω), the pair groupoid M ×M ⇒ M with the symplectic form Ω = pr∗1ω − pr∗2ω is
a symplectic groupoid.

In this case, the target map t = pr1 is manifestly Poisson. The Lie algebroid A(M ×M) has
been shown in Example 3.11 to be isomorphic to TM , and the isomorphism σΩ from Theorem
4.9 now equals σΩ = ω♭.

A concrete example is R2n with the standard symplectic coordinates (qi, pi)
n
i=1, and the

canonical Poisson structure is given by {pi, qi} = 1, {qi, qj} = {pi, pj} = 0. The symplectic
groupoid realization of R2n is obtained by considering R4n, with coordinates (qi, pi)

2n
i=1. The

symplectic groupoid is given by:

R4n

R2n

s t

Ω =
n∑

i=1

dqi ∧ dpi −
2n∑

i=n+1

dqi ∧ dpi

t(qi, pi)
2n
i=1 = (qi, pi)

n
i=1

s(qi, pi)
2n
i=1 = (qi, pi)

2n
i=n+1

(qi, pi)
2n
i=1 · (qi, pi)3ni=n+1 = ((qi, pi)

n
i=1, (q

i, pi)
3n
i=2n+1)

Note that the partial multiplication is just the pair groupoid one. ♦

Example 4.15 (Zero Poisson structures). Recall from Example 4.5 (ii) that the cotangent
bundle T ∗M of a given manifold M , endowed with the canonical symplectic form ω, is a sym-
plectic groupoid (T ∗M,ω) ⇒ M . In this case, the source and target maps coincide, so we get
ker dt = (ker dt)ω, and the induced Poisson structure on M is the zero structure. The Lie alge-
broid of T ∗M ⇒ M can be easily identified with T ∗M , and the isomorphism σω : T

∗M → T ∗M
from Theorem 4.9 is now just the identity map.

For a more specific example, onM = Rn with coordinates (qi)ni=1, we find that the symplectic
groupoid is given by:

R2n

Rn

s t

Ω =
n∑

i=1

dqi ∧ dpi

t(qi, pi)
n
i=1 = s(qi, pi)

n
i=1 = (qi)ni=1

(qi, p̃i)
n
i=1 · (qi, pi)ni=1 = ((qi)ni=1, (pi + p̃i)

n
i=1)

Note that partial multiplication is just addition in the fibres. ♦

As promised, we now use the proof of Theorem 4.11 to construct two nontrivial examples.

Example 4.16. Consider R2 with the Poisson structure given by

{x, y} = x.

First off, to obtain its symplectic realization (S, ω), note that dimS ≥ 4 since πx vanishes at
x = 0, so we impose the candidate manifold as S = R4. We follow the recipe in Remark 2.4, so
we let µ(x, y, u, v) = (x, y), and impose the Poisson structure as

{x, y} = x, {y, v} = 1, {x, u} = ϕ, {x, v} = {u, v} = {y, u} = 0,
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where ϕ : R4 → R is a function, to be determined; this imposition of structure functions is made
by taking into account the requirement that πω has to be nondegenerate. To determine the
function ϕ, we must take into account the Jacobi identity, and a straightforward computation
gives

ϕ = e−v,

so we get
πω = x∂x ∧ ∂y + ∂y ∧ ∂v + e−v∂x ∧ ∂u,

or equivalently,
ω = ev(du ∧ dx+ x du ∧ dv) + dv ∧ dy.

This can be expressed as ω = −d(xϑ1 + yϑ2), where ϑ1 = ev du and ϑ2 = dv form a coframe on
R2, which satisfies dϑ1 = −ϑ1 ∧ ϑ2, dϑ2 = 0. It is clear that ω is a symplectic form on R4, and
that the projection µ : (S, ω)→ (M,π) onto the first two coordinates is a Poisson map, which is
a surjective submersion.

To yield a groupoid structure on S, we follow the recipe in the proof of Theorem 4.11. We
prescribe the Lagrangian section u : R2 → R4 as the obvious inclusion u(x, y) = (x, y, 0, 0),
and consider the infinitesimal action a : Ω1(R2) → X1(R4), which is by definition given (on the
coframe dx,dy of M) by

a(dx) = π♯
ω(dx) = x∂y + e−v∂u, a(dy) = π♯

ω(dy) = −x∂x + ∂v,

where we have used the definition of πω above. The flows of these vector fields read

ϕ
a(dx)
λ (x, y, u, v) = (x, y + xλ, u+ e−vλ, v),

ϕ
a(dy)
λ (x, y, u, v) = (e−λx, y, u, λ+ v),

and now recall that im(ap) = (ker dµp)
ω, i.e. the image of a spans the orbit distribution (ker dµ)ω,

and the s-fibres should be its integral manifolds. To compute s, hence note that any function
f : R4 → R which is constant on the image of a, must be of the form

f(x, y, u, v) = f(e−λx, y, u, λ+ v) = f(x, y + xµ, u+ e−vµ, v)

for any λ, µ ∈ R. To get the point which intersects the image of the unit section u : R2 → R4,
we first set λ = −v, so that

f(x, y, u, v) = f(evx, y, u, 0) = f(evx, y + evxµ, u+ µ, 0),

and secondly, we set µ = −u, so the source map should read

(x, y, u, v) 7→ (xe−v, y − evx). (12)

Since µ is the simpler map, we rather set the source as s = µ and the target t as (12), but now
we have to also change the sign of the symplectic form, so we set Ω = −ω. At this point, we
also set Σ = R4. Finally, we have to find the partial multiplication on Σ which will make it into
a symplectic groupoid. To that end, note that

s(x̃, ỹ, ũ, ṽ) = t(x, y, u, v) ⇐⇒ x̃ = xev and ỹ = y − xuev,

and compute t(x̃, ỹ, ũ, ṽ):

(x̃eṽ, ỹ − x̃ũeṽ) = t(x̃, ỹ, ũ, ṽ) = t(xev, y − xuev, ũ, ṽ) = (xev+ṽ, y − x(ue−ṽ + ũ)ev+ṽ).
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We can depict this situation diagrammatically as

(xev+ṽ, y − x(ue−ṽ + ũ)ev+ṽ) (x̃, ỹ) (x, y)
(x,y,u,v)(x̃,ỹ,ũ,ṽ)

(x,y,U,V )

This suggests that we take V = v + ṽ and U = ue−ṽ + ũ. Summing up, the candidate for our
symplectic groupoid (Σ,Ω) that realizes (M,π) is:

R4

R2

s t

Ω = ev(dx ∧ du+ x dv ∧ du) + dy ∧ dv

s(x, y, u, v) = (x, y)

t(x, y, u, v) = (xe−v, y − evx)

(x̃, ỹ, ũ, ṽ) · (x, y, u, v) = (x, y, ue−ṽ + ũ, v + ṽ)

It is not hard to show that the form Ω is indeed multiplicative, so that this is indeed our wanted
symplectic groupoid realization.

Note also that this is an action groupoid of the Lie group G = R2 with the group multipli-
cation given by

(ũ, ṽ)(u, v) = (ue−ṽ + ũ, v + ṽ)

which acts on R2 from the left by (u, v) · (x, y) = (xev, y − xuev). It can be checked that this
action groupoid is precisely the symplectic coadjoint action groupoid from Example 4.5 (iii). ♦

We list the following example without further justification; the groupoid structure is obtained
in a similar fashion to the one above.

Example 4.17. The symplectic groupoid realization of the LV-type Poisson structure on R2,

{x, y} = axy, (a ∈ R)

can be obtained similarly as in previous example. It turns out that it is the following one.

R4

R2

s t

Ω = dx ∧ du+ dy ∧ dv − ad(xu) ∧ d(yv)

s(x, y, u, v) = (x, y)

t(x, y, u, v) = (xeayv, ye−axu)

(x̃, ỹ, ũ, ṽ) · (x, y, u, v) = (x, y, u+ eayvũ, v + e−axuṽ)

For a ̸= 0, this turns out to no longer be an action groupoid. ♦
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