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Abstract

Sheaves arise in areas of mathematics where objects being dealt with are of a local nature,
in the sense that one can glue locally defined objects to yield global ones. In the present
exposition, we show that this idea is elegantly described within the category theoretic frame-
work, and demonstrate that the category of sheaves on a topological space is an elementary
topos. We conclude our discussion with a view towards topos theory.
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1 Sheaves on topological spaces

1.1 Elementary definitions and examples

Throughout this document, X will denote a topological space. To motivate the definition of a
sheaf, consider the algebra C(U) of continuous real-valued functions on any open subset U ⊂ X.
If V ⊂ U is another open set in X, the restriction map ρU,V := −|V : C(U) → C(V ) satisfies the
simple property that

(f |V )|W = f |W for all f ∈ C(U),

whenever W is yet another open subset with W ⊂ V ⊂ U . In other words, ρU,W = ρV,W ◦ ρU,V ,
which may be rephrased categorically, as follows. Define the category O(X) of open sets on X
by Obj(O(X)) = Ω(X), i.e. the set of its objects is the topology Ω(X) on X, and the morphisms
are their inclusions, that is

Hom(V,U) =

{
{V ↪→ U} if V ⊂ U ,

∅ otherwise

In this way, C : O(X) → Set becomes a contravariant functor, defined as

U 7→ C(U), (V ↪→ U) 7→ ρU,V : C(U) → C(V ).

Furthermore, any f ∈ C(U) may be glued together from local pieces – more specifically, if (Ui)i∈I
is any open cover of U in the sense that U = ∪iUi, and we are given functions fi ∈ C(Ui),
then there is at most one f ∈ C(U) with f |Ui = fi for all i ∈ I, which exists if and only if
fi|Ui∩Uj = fj |Ui∩Uj , for any two i, j ∈ I.

Definition 1.1. A presheaf on X is a (covariant) functor F : O(X)op → Set. The map ρU,V :=
F (V ↪→ U) is called the restriction map from U to V , and we write f |V := ρU,V (f) for any
f ∈ F (U).

Definition 1.2. A sheaf on X is a presheaf F : O(X)op → Set that satisfies the following two
collation conditions:

(i) For any open subset U ⊂ X, open cover (Ui)i∈I of U , and f, g ∈ F (U), if there holds
f |Ui = g|Ui for all i ∈ I, then f = g.

(ii) For any open subset U ⊂ X, open cover (Ui)i∈I of U , and elements fi ∈ F (Ui) with the
property that fi|Ui∩Uj = fj |Ui∩Uj for any two i, j ∈ I.

Remark 1.3. The use of letter F is customary since the french translation of the word sheaf
is faisceau. The above collation conditions are easily expressed in categorical framework in the
following way. Given an open cover (Ui)i∈I of U , we have the canonical arrows in Set:

e : F (U) →
∏
i

F (Ui), e(f) = (f |Ui)i,

p, q :
∏
i

F (Ui) →
∏
i.j

F (Ui ∩ Uj), p(fi)i = (fi|Ui∩Uj )i,j , q(fi)i = (fj |Ui∩Uj )i,j .

The collation conditions are then expressed as: e is the equalizer of p and q, i.e. the diagram

F (U)
∏

i F (Ui)
∏

i,j F (Ui ∩ Uj)
e

p

q

is equalizer in Set.
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Example 1.4.

(i) The functor y(X) = HomO(X)(−, X) is obviously a presheaf. To prove it is a sheaf, take
any open subset U ⊂ X and its open cover (Ui)i∈I . Observe that elements of y(X)(Ui)
are just open subsets of Ui and the restriction maps are intersections, so if we are given
Vi ⊂ Ui with the property that Vi∩Uj = Vj ∩Ui for all i, j ∈ I, then there is a unique open
subset V ⊂ X such that V ∩ Ui = Vi, namely V = ∪iVi. This proves the second collation
condition (the first one is trivial). This is sometimes called the constant sheaf on X, and
we write y(X)(U) = {U ↪→ X} = {∗}. In particular, if X = ∅, y(∅) = {∗}, and any sheaf
on ∅ must be of such form since the product over an empty (index) set is a singleton, so
collation condition reads F (∅) → {∗} ⇒ {∗}.

(ii) From the motivating example, we see that C is a sheaf on any topological space X.
Furthermore, if X is a smooth manifold, the functor Ck : O(X)op → Set, k ∈ N ∪ {∞}
which assigns to any open subset U the set of k-times continuously differentiable functions,
is a sheaf since differentiability is local. This means that we get a nested sequence of
subsheaves C∞ ⊂ Ck ⊂ . . . C1 ⊂ C (the notion of a subsheaf is explained in section 1.2).
Similarly, we have the sheaf H of holomorphic functions on a complex manifold, which is
a subsheaf of C∞.

(iii) The presheaf B of bounded functions on a topological space X is a presheaf, but not a
sheaf since bounded functions may fail to collate to a bounded function. Hence condition
(ii) above fails, however, the uniqueness in condition (i) still holds – in other words, the
map e is a monomorphism but not the equalizer of p and q. Such a presheaf is said to be
separated.

Definition 1.5. A morphism of presheaves F and G on X is a natural transformation η : F ⇒
G, i.e. for any two open subsets V ⊂ U in X, there must hold ηU (f)|V = ηV (f |V ) for all
f ∈ F (U). We will denote the (functor) category of presheaves by [O(X)op,Set], and its
subcategory of sheaves by Sh(X).

Remark 1.6. The subcategory Sh(X) in [O(X)op,Set] is obviously full, since we’re only
restricting to objects where collation conditions hold. Moreover, if g : X → Y is a con-
tinuous map of topological spaces, defining a functor g∗ : Sh(X) → Sh(Y ) on objects as
(g∗F )(V ) = F (g−1(V )) and on morphisms as (g∗η)V = ηg−1(V ), for any open V ⊂ Y , yields
a functor Sh: Top → Cat.

The object y(X) in Sh(X) is clearly terminal, since if F is a sheaf on X, there is precisely
one map ηU : F (U) → y(X)(U) = {∗}, and η is manifestly a natural transformation.

1.2 Subsheaves

Subobjects in the (functor) category [O(X)op,Set] of presheaves are subfunctors – recall that if
F : Cop → Set is a functor, then a functor G : Cop → Set is called a subfunctor of F , if:

(i) G(c) ⊂ F (c) for all c ∈ Obj(C),

(ii) G(f) = F (f)|G(c) for all f : d→ c in C.

Definition 1.7. A subsheaf of F on X is a subfunctor of F which is itself a sheaf.

Proposition 1.8. A subfunctor S of a sheaf F on X is a subsheaf if and only if for any open
subset U ⊂ X and f ∈ F (U) and any open cover (Ui)i∈I of U ,

f ∈ S(U) ⇐⇒ f |Ui ∈ S(Ui) for all i ∈ I.
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Proof. If S is a sheaf, f ∈ F (U) and f |Ui ∈ S(Ui) clearly imply f ∈ S(U) by collation conditions.
Conversely, we draw the following diagram in Set (bottom row is an equalizer, vertical arrows

are monomorphisms, mS is an arbitrary map between sets with p ◦mS = q ◦mS , and uF is the
unique map such that eF ◦ uF = i ◦mS):

S(U)
∏

i S(Ui)
∏

i,j S(Ui ∩ Uj)

A

F (U)
∏

i F (Ui)
∏

i,j F (Ui ∩ Uj)

eS

p

q

mS

i◦mS

uS

uF
i

eF

Here, we have two commutative squares on the right (in any of the two, either take the top or the
bottom arrows). For any a ∈ A, write mS(a) = (mi

S(a))i, where m
i
S(a) ∈ S(Ui). We must have

the equality mi
S(a) = uF (a)|Ui since the bottom row is an equalizer, hence uF (a)|Ui ∈ S(Ui)

and so by assumption the map uF maps into S(U), so we set uS = uF . Hence the top row is an
equalizer as well. ■

1.3 Sheaves of sections of bundles

Our next objective is to show that every sheaf can be seen as a sheaf of sections of a bundle. A
bundle over X is a continuous map p : Y → X. There is an abundance of examples of bundles,
the most important of which are fibre bundles (vector bundles, principal G-bundles, associated
bundles, and covering maps). Categorically, bundles over X are just objects of the slice category
Top/X; the morphisms between p : Y → X and p′ : Y ′ → X in this category are continuous
maps g : Y → Y ′ such that p′ ◦ g = p.

A section of a bundle p : Y → X is a map s : U → Y defined on an open subset U ⊂ X, such
that p ◦ s is the inclusion iU : U ↪→ X. We write

ΓY (U) = {s : U → Y | p ◦ s = iU}

for the set of all sections of the bundle p : Y → X. If V ⊂ U is an open set of X, we get a
restriction map ΓY (U) → ΓY (V ), which means that ΓY : O(X)op → Set is a presheaf. The
same argument as in the case of the sheaf C of continuous functions on X shows that ΓY is in
fact a sheaf over X, called the sheaf of sections of p : Y → X. Furthermore, given a morphism of
bundles g : Y → Y ′, we can define a morphism Γ(g) : ΓY ⇒ ΓY ′ of sheaves by Γ(g)U (s) = g ◦ s,
for any section s : U → Y . In this way, Γ: Top/X → Sh(X) becomes a functor.

Examples of sheaves of sections include the sheaf of differential forms (more generally, tensor
fields) on a smooth manifold, the sheaves of gauges and connections on principal bundles, and
so on. Note also that the sheaf of continuous functions C is just the sheaf of sections of the
bundle prX : X × R → X.

1.3.1 Bundle of germs of a presheaf

Let us demonstrate that every presheaf gives rise to a bundle. To do so, we introduce the notion
of a germ.
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Definition 1.9. Let P : O(X)op → Set be a presheaf, fix x ∈ X, and suppose U and V are two
open neighborhoods of x. We say that s ∈ P (U), t ∈ P (V ) have the same germ, if there is an
open neighborhood W ⊂ U ∩ V of x such that s|W = t|W . This defines an equivalence relation
on the set ∪{P (U) | U is an open neighborhood of x}, and any equivalence class germx(s) is
called the germ of s at x.

The stalk of the presheaf P at x ∈ X is the set

Px = {germx(s) | s is a section, defined on a nbd. of x}

Proposition 1.10. The stalk Px of any presheaf P on X is the colimit of the diagram P (x),
defined as the restriction of P to the full subcategory

O(X)opx = {U ∈ Ω(X) | x ∈ U}.

of O(X)op. In other words,
Px = lim−→

U∋x
P (U).

Proof. The object Px in Set, together with maps (germU
x : P (U) → Px)U∋x form a cocone of

the diagram P (x), since if V ⊂ U is open in X, we have germV
x ◦ ρU,V = germU

x . Furthermore, if
(τU : P (U) → L)U∋x is any other cocone of P (x), we have the following diagram

P (U) P (V )

P (x)

L

ρU,V

u

germU
x germV

x

τU τV

so we define u(germxs) = τU (s) whenever s ∈ P (U), hence our cocone is universal. ■

We now define the bundle of germs of P as the set

Λ(P ) =
∐
x∈X

Px,

together with the canonical projection p : Λ(P ) →M , p(germxs) = x. The task at hand now is
to endow Λ(P ) with a topology. To do so, observe that any s ∈ P (U) determines a map

s̄ : U → Λ(P ), s̄(x) = germxs.

Proposition 1.11. A basis for some topology on Λ(P ) is given by the family

B = {s̄(U) | U ⊂ X is open, s ∈ P (U)}.

With respect to this topology, the canonical projection p and the section s̄, induced by an
arbitrary s ∈ P (U), are local homeomorphisms.

Proof. If s̄(U), t̄(V ) ∈ B intersect, pick any germxs from the intersection, and now s and t
must coincide on an open neighborhood W ⊂ V ∩ U of x (by definition of a germ), so s̄(W ) ⊂
s̄(U) ∩ t̄(V ). This proves B is a basis for some topology on Λ(P ).
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Given s ∈ P (U), the map s̄ : U → Λ(P ) is continuous since

s̄−1(t̄(V )) = {x ∈ U ∩ V | s̄(x) = t̄(x)} = {x ∈ U ∩ V | germxs = germxt},

so by definition of a germ, for any x ∈ U ∩ V , there exists an open neighborhood Wx ⊂ U ∩ V
such that W ⊂ s̄−1(t̄(V )). The map s̄ is clearly open.

Finally, if U ⊂ X is open, p−1(U) = ∪s∈P (U)s̄(U), so p is continuous. That p is open is clear
from p(s̄(U)) = U , which holds for any s ∈ P (U), where U ⊂ X is open. ■

Remark 1.12. A bundle p : Y → X is said to be étale, if p is a local homeomorphism. Last
proposition shows that for any presheaf P , Λ(P ) is étale. The subcategory Étale(X) of Top/X
is clearly full, since we’re only restricting the class of objects.

Typical examples of étale bundles are provided by covering spaces, however, not every étale
bundle is a covering space, since it may fail to be locally trivial. For example, if (Ui)i is an open
cover of X, the disjoint union

∐
i Ui with the obvious projection

∐
i Ui → X is étale, but the

fiber over a given point has cardinality the number of open sets Ui containing it, so
∐

i Ui does
not have a typical fibre. Moreover, if p : Y → X is étale, the size of the open neighborhoods Vi
of various points yi ∈ p−1(x) that lie in the same fibre, as required in the definition of the étale
bundle, may differ, and so the intersection ∩ip(Vi) of their projections may fail to be open.

To make Λ: [O(X)op,Set] → Étale(X) into a functor, we need to describe it on morphisms
of presheaves. If Θ: P ⇒ Q is a morphism of presheaves, it induces at each x ∈ X a map

Θx : Px → Qx, Θx(germ
P
x s) = germQ

x (ΘU (s))

for any s ∈ P (U), where U is any open neighborhood of x. Well-definedness of this map follows
from naturality of Θ. Thus, for any x ∈ X, we get a functor

[O(X)op,Set] → Set,

given on objects as P 7→ Px and on morphisms as Θ 7→ Θx. Finally, the morphism Θ induces
the map

Λ(Θ): Λ(P ) → Λ(Q),

defined as the disjoint union Λ(Θ) =
∐

x∈X Θx, which is continuous since

Λ(Θ)−1(s̄(U)) = ∪x∈U{germP
x (t) | t ∈ P (U),Θx(germ

P
x (t)) = germQ

x (s)},

where s ∈ Q(U) is arbitrary; this set is open in Λ(P ) since for any germP
x (t) from it, there is an

open neighborhoodW ⊂ U of x such that ΘU (t)|W = s|W , hence t̄(W ) is the open neighborhood
of germP

x (t) contained in Λ(Θ)−1(s̄(U)). This proves the following proposition.

Proposition 1.13. The map Λ: [O(X)op,Set] → Étale(X), which takes any presheaf into its
bundle of germs, is a functor.

Remark 1.14. The bundle Λ(P ) over X isn’t necessarily Hausdorff, even if X is. For example,
take the sheaf P = C of continuous functions on R, and consider the functions f = 0 and

h(x) =

{
x2 if x ≥ 0,

0 if x ≤ 0.

Then germ0f ̸= germ0h, but germtf = germth for all t < 0, so any neighborhood of germ0f
intersects every neighborhood of germ0h in germtf for some t < 0.

In contrast, considering the case of the sheaf H of holomorphic functions on C, Λ(H) is
Hausdorff due to the identity principle for holomorphic functions.
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1.3.2 Sheafification of a presheaf

The next important step is to consider the sheaf

ΓΛ(P )

of sections of the bundle Λ(P ) → X of germs of a given presheaf P . On any open subset U ⊂ X,
we define a morphism ηP : P ⇒ ΓΛ(P ) of presheaves as

(ηP )U : P (U) → ΓΛP (U), (ηP )U (s) = s̄,

which is indeed a natural transformation since (ηP )U (s)|V = s̄|V = s|V = (ηP )V (s|V ) for any
open subset V ⊂ U . In what follows, we show that ΓΛ is an optimal solution to the problem of
producing a sheaf out of a presheaf P , i.e. that ΓΛ is part of an adjunction.

Lemma 1.15. If the presheaf F is a sheaf, then ηF is a natural isomorphism. In other words,
any sheaf F is naturally isomorphic to its sheaf ΓΛ(F ) of sections of its bundle of germs.

Proof. Let U ⊂ X be open. We need to show that (ηF )U is an isomorphism in Set. Let
h : U → Λ(F ) be a cross section of Λ(F ); we will show that there is exactly one s ∈ P (U), such
that h = s̄. By definition of the bundle of germs of F , there exists for any x ∈ U an open
neighborhood Ux ⊂ U and sx ∈ F (Ux), so that h(x) = germx(sx). Since h is continuous and
sx(Ux) ⊂ Λ(F ) is open, there is an open neighborhood Vx ⊂ U of x, such that h(Vx) ⊂ sx(Ux).
The sets (Vx)x∈U clearly cover U, and the sections sx, sy both agree with h on Vx ∩ Vy for any
two points x, y ∈ U , thus there holds germz(sx) = germz(sy) for any z ∈ Vx ∩ Vy. The collation
conditions of the sheaf F now ensure that there is a unique s ∈ P (U), such that s|Vx = sx for
all x ∈ U . By construction, h = s̄. ■

Let us now show that the inclusion functor I : Sh(X) → [O(X)op,Set] of sheaves into
presheaves on X, is the right adjoint of ΓΛ, which will justify why the functor ΓΛ is called the
sheafification functor.

Theorem 1.16. For any presheaf P onX, the pair
(
ΓΛ(P ), ηP : P ⇒ I(ΓΛ(P ))

)
is the universal

morphism from P to the inclusion functor I : Sh(X) → [O(X)op,Set]. That is, for any sheaf F
on X and any morphism Θ: P ⇒ F of presheaves, there is a unique morphism σ : ΓΛ(P ) ⇒ F
of sheaves, such that σ ◦ ηP = Θ:

P ΓΛ(P )

F

ηP

σ
Θ

Remark 1.17. Abuse of notation: ηP denotes the morphism I ◦ ηP of presheaves.

Proof. Since ηF : F ⇒ ΓΛ(F ) is an isomorphism, we may define the morphism σ of sheaves as
σ = η−1

F ◦ ΓΛ(Θ), i.e. as the bottom triangle of the diagram:

P ΓΛ(P )

F ΓΛ(F )

ηP

Θ σ ΓΛ(Θ)

ηF
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That the top triangle also commutes is a straightforward computation:

σU ((ηP )U (s)) = σU (s̄) = (ηF )
−1
U (ΓΛ(Θ)(s̄)︸ ︷︷ ︸

Λ(Θ)◦s̄

) = ΘU (s),

where s ∈ P (U) was arbitrary.
To show uniqueness of σ, suppose τ : ΓΛ(P ) ⇒ F is a morphism of sheaves with τ ◦ ηP =

Θ = σ ◦ ηP . If h : U → Λ(P ) is a section, then for any x ∈ U there is a neighborhood Vx ⊂ U
and sx ∈ P (Vx), such that h(x) = germx(sx). As in proof of Lemma 1.15, by continuity of h
we can assume Vx is small enough for h|Vx = sx = (ηP )Vx(sx) to hold. By assumption and the
naturality of σ and τ , we thus have σU (h)|Vx = τU (h)|Vx . Since U = ∪x∈UVx and F is a sheaf,
we conclude σU (h) = τU (h) holds for any section h : U → Λ(P ) and any open subset U ⊂ X,
hence σ = τ . ■

Corollary 1.18. For any space X, Sh(X) is a reflective subcategory of [O(X)op,Set]. More
precisely, we have the adjunction

Sh(X) [O(X)op,Set]
I

ΓΛ

of sheafification and inclusion functors (ΓΛ is the left adjoint of I).

Proof. The only thing left to show is that η : 1[O(X)op,Set] ⇒ I ◦(ΓΛ) is a natural transformation.
One thus has to check ηQ ◦ Θ = ΓΛ(Θ) ◦ ηP , for any morphism Θ: P ⇒ Q of presheaves; this

boils down to the definition Θx(germ
P
x s) = germQ

x (ΘUs) of Θx : Px → Qx, which holds for any
section s, defined on an open neighborhood U of some x ∈ X. ■

1.3.3 Étalification of a bundle

For any bundle p : Y → X over X, recall from Proposition 1.11 that the bundle ΛΓ(Y ) is étale,
and define the morphism of bundles εY : ΛΓ(Y ) → Y as

εY (germxs) = s(x) for any section s : U → Y,

which is a well defined map (by the definition of a germ), and it is continuous. Indeed, if V ⊂ Y
is open, then

ε−1
Y (V ) = {germp(y)s | y ∈ V, s ∈ sectY (y)}

where sectY (y) denotes the set of all sections of Y , defined on an open neighborhood of p(y)
in X and satisfying s(p(y)) = y. For germp(y)s ∈ ε−1

Y (V ), by continuity of s there is an open
neighborhood U of p(y) such that s(U) ⊂ V , hence εY (s̄(U)) = s(U) ⊂ V , so s̄(U) is an open
neighborhood of germp(y)s in ΛΓ(Y ) that is contained in ε−1

Y (V ).
Similarly to the result in Lemma 1.15, we now have the following result.

Lemma 1.19. If the bundle p : Y → X is étale, then εY is a homeomorphism. In other words,
any étale bundle is isomorphic to the bundle of the germs of its sections.

Proof. Let’s construct an inverse ρY : Y → ΛΓ(Y ) of the map εY . Fix y ∈ Y ; since the bundle
p : Y → X is étale, there exists an open neighborhood U of p(y) in X and a section s : U → Y
with s(p(y)) = y, i.e. s ∈ sectY (y). Moreover, if t ∈ sectY (y) is another such section of Y ,
defined on an open neighborhood V of p(y), then t and s must coincide on an open neighborhood
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W ⊂ U ∩ V of x, since the equalizer Eqs,t = {x ∈ U ∩ V | s(x) = t(x)} = p(s(U) ∩ t(V )) of the
sections s, t is open in X.

Defining ρY (y) = s̄(p(y)) = germp(y)s, where s ∈ sectY (y) is arbitrary, hence yields a well-
defined map, and this is clearly the inverse of εY . Continuity of εY follows from the fact that
both p̃ : ΛΓ(Y ) → X and p : Y → X are local homeomorphisms, and there holds p ◦ εY = p̃,
hence bijectivity and continuity of εY imply it is a homeomorphism. ■

Dualizing sheafification, we can now show that the inclusion functor J : Étale(X) → Top/X
of étale bundles into bundles over X, is the left adjoint of ΛΓ, so that the functor ΛΓ may be
called the étalification functor.

Theorem 1.20. For any bundle p : Y → X, the pair (ΛΓ(Y ), εY : ΛΓ(Y ) → Y ) is the universal
morphism from the inclusion functor J : Étale(X) → Top/X to Y . That is, for any étale bundle
q : E → X and any morphism g : E → Y of bundles, there is a unique morphism σ : E → ΛΓ(Y )
of étale bundles, such that εY ◦ σ = g:

E

ΛΓ(Y ) Y

σ
g

εY

Proof. We now consider the diagram below, and define a map σ = ΛΓ(g) ◦ ε−1
E , i.e. σ(e) =

germY
q(e)(g ◦ s), where s ∈ sectE(e) is arbitrary. This map is continuous, since εE is a homeo-

morphism.

ΛΓ(E) E

ΛΓ(Y ) Y

g

εY

εE

ΛΓ(g) σ

The lower triangle commutes, since for any e ∈ E,

εY (σ(e)) = εY (germ
Y
q(e)(g ◦ s)) = (g ◦ s)(q(e)) = g(e),

where s ∈ sectE(e), as above.
To show uniqueness, suppose τ : E → ΛΓ(Y ) is a morphism of bundles with ηY ◦ τ = g =

ηY ◦ σ. Pick any e ∈ E and denote x = q(e). Since E is étale, we can pick s ∈ sectE(e), and
since τ is a bundle morphism, we must have

τ(e) = τ(s(x)) = germY
x (s

τ )

for some section sτ : U → Y , defined on an open neighborhood U of x in X. By assumption, we
have sτ (x) = εY (germ

Y
x (s

τ )) = εY (germ
Y
x (g ◦ s)) = (g ◦ s)(x), and since the bundle ΛΓ(Y ) is

also étale, this implies (as in proof of previous lemma) sτ = g ◦ s on a neighborhood on x, which
is what we wanted to show. ■

Corollary 1.21. For any space X, Étale(X) is a coreflective subcategory of Top/X. More
precisely, we have the adjunction

Top/X Étale(X)
ΛΓ

J

of inclusion and étalification functors (J is left adjoint to ΛΓ).
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Proof. The only thing left to prove is that ε : J ◦ (ΛΓ) ⇒ 1Top/X is a natural transformation.
We thus have to check g ◦ εY = εY ′ ◦ ΛΓ(g), for any morphism g : Y → Y ′ of bundles:

g(εY (germ
Y
x s)) = g(s(x)) = germY ′

x (g ◦ s) = εY ′(ΛΓ(g)(germY
x s)),

where s is a section of Y , defined on a neighborhood of x ∈ X. ■

1.3.4 Equivalence of categories of sheaves and étale bundles

The jigsaw of the previous sections falls into place with the following result.

Theorem 1.22. For any space X, we have the adjunction

Top/X [O(X)op,Set],
Γ

Λ

and the functors Λ and Γ restrict to an equivalence of categories

Étale(X) Sh(X).
Γ

Λ

Proof. We first show that η : 1[O(X)op,Set] ⇒ ΓΛ and ε : ΛΓ ⇒ 1Top/X are the unit and counit of
the adjunction, respectively. Corollaries 1.18 and 1.21 show that they are natural transforma-
tions, so the only thing left to check is the triangle identities, i.e. that both compositions

Γ ΓΛΓ Γ, Λ ΛΓΛ Λ
ηΓ Γε Λη εΛ

are identities; that is, we should check Γ(εY ) ◦ ηΓY = 1ΓY and εΛP ◦ Λ(ηP ) = 1ΛP . We have:

Γ(εY )(ηΓY (s)) = Γ(εY )(s̄) = εY ◦ s̄ = s,

εΛP (Λ(ηP )(germxf)) = εΛP ((ηP )x(germxf)) = εΛP (germxf̄) = f̄(x) = germxf,

where s : U → Y and f : U → ΛP are sections defined on an open subset U ⊂ X, and x ∈ U .
Note that for clarity, we have omitted the subscripts U .

The second part of the theorem follows from the fact that restrictions of η and ε to Sh(X)
and Étale(X), respectively, are natural isomorphisms by Lemmas 1.15 and 1.19, hence the
respective restrictions of the two functors Λ and Γ are quasi-inverse. ■

Remark 1.23. The second part of last theorem means that each sheaf F onX can be considered
as the étale bundle ΛF → X; elements s ∈ F (U) can be identified as sections s : U → ΛF , the
identification between the two given as s 7→ s̄; for an open subset V ⊂ U , the restriction map
FU → FV can be seen as the actual restriction of the section. Similarly, every étale bundle Y
over X can be seen as the sheaf ΓY on X.

1.4 Stalks of sheaves and the skyscraper sheaf

For completeness, we now expose some more properties of stalks of sheaves. We have already
defined the stalk Px of a presheaf P at x ∈ X. For any x ∈ X, we now define the stalk functor
at x, denoted Stalkx : [O(X)op,Set] → Set, given on objects as F 7→ Fx and on morphisms of
sheaves as Θ 7→ Θx, and it is not hard to show it is indeed a functor. In what follows, we will
denote by Stalkx the restriction of this functor to the subcategory Sh(X) of [O(X)op,Set].
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Now let A ∈ Obj(Set) by any set and define the presheaf Skyx(A) : O(X)op → Set as

Skyx(A)(U) =

{
A if x ∈ U,

{∗} otherwise,

where {∗} denotes some fixed singleton set. If V ⊂ U is an open subset, we define

Skyx(A)(V ↪→ U) =

{
idA if x ∈ V,

µ otherwise,

where µ denotes the unique map into {∗}.

Lemma 1.24. For any set A and any point x ∈ X, Skyx(A) is a sheaf.

Proof. If U ⊂ X is open and (Ui)i is its open cover, then let fi ∈ Skyx(A)(Ui), i.e.

fi =

{
ai ∈ A if x ∈ Ui,

∗ otherwise.

The assumption that fi|Ui∩Uj = fj |Ui∩Uj forces ai = aj whenever x ∈ Ui ∩ Uj , so there is a
unique a ∈ A such that ai = a whenever x ∈ Ui. Hence elements fi collate to a unique element
f ∈ Skyx(U) which is f = a if x ∈ U , and ∗ otherwise. ■

One should think of the skyscraper sheaf as the sheaf, supported at a single point. The above
construction now yields a functor Skyx : Set → Sh(X), called the skyscraper functor at x ∈ X,
by acting on any arrow g : A → B in Set as Skyx(g) : Skyx(A) ⇒ Skyx(B), which is pointwise
determined by

Skyx(g)U =

{
g if x ∈ U,

µ otherwise.

Proposition 1.25. For any x ∈ X, the stalk functor Stalkx : Sh(X) → Set is left adjoint to
the skyscraper functor Skyx.

Proof. For any sheaf F , we will find a universal morphism ηF from F to Skyx. That is, for any
set A and a morphism Θ: F ⇒ Skyx(A) of sheaves, we have the following diagram.

F Skyx(Fx) Fx

Skyx(A) A

Θ

ηF

Skyx(Θ̄) Θ̄

We define ηF pointwise as the map (ηF )U : F (U) → Skyx(Fx)(U),

(ηF )U (f) =

{
germxf if x ∈ U,

∗ otherwise,

and now determine the map Θ̄ by the above diagram, that is, Skyx(Θ̄)U (ηF )U (f) = ΘU (f). If
x ̸∈ U , Θ̄ = µ is the only map that satisfies this condition. Otherwise, this condition reads
Θ̄(germxf) = ΘU (f) for any f ∈ F (U). This ensures uniqueness of Θ̄; we now of course use
this to define Θ̄. Finally, it is not hard to check that η : 1Sh(X) ⇒ Skyx ◦ Stalkx is a natural
transformation. ■
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Remark 1.26. One consequence of the last proposition is that a morphism Θ: F ⇒ G of
sheaves is a monomorphism (resp. epimorphism) if and only if for any x ∈ X, the map of stalks
Θx : Fx → Gx is injective (resp. surjective). Since we are not going to use this, we leave it as an
exercise to the reader.

1.5 Properties of the category of sheaves

The objective of this section is to show that for any topological space X, the category Sh(X) is
an elementary topos, i.e.:

(i) Sh(X) has all finite limits and colimits,

(ii) Sh(X) is cartesian closed,

(iii) Sh(X) has a subobject classifier.

By Theorem 1.22, the same then holds for Étale(X).

1.5.1 Sh(X) is complete and cocomplete

To show that Sh(X) is closed for small limits, we introduce the notion of a sieve, which will enable
us to describe sheaves entirely in terms of objects of the category of presheaves. Intuitively, these
are sets of arrows which exhibit similar behaviour as right ideals in ring theory.

Definition 1.27. A sieve on the object c of a category C is a set S of arrows to c, such that
for any f ∈ S and an arrow h in C with cod(h) = dom(f), there holds fh ∈ S.

Proposition 1.28. For any object c in a small category C, there is a bijective correspondence
between sieves on c and subfunctors of y(c) = HomC(−, c) : Cop → Set.

Proof. Given a subfunctor Q of y(c), we have Q(d) ⊂ HomC(d, c), so we define

SQ =
⋃

d∈Obj(C)

Q(d)

and this is a sieve, since if f ∈ Q(d) and h : d′ → d is any arrow in C, then

Q(h) = Hom(h, c)|Q(d) : Q(d) → Q(d′), Q(h)(f) = fh ∈ Q(d′) ⊂ SQ

Conversely, if S is a sieve on c, define the functor QS on objects of C as

QS(d) = S ∩HomC(d, c) = {f : d→ c | f ∈ S}

and on arrows as QS(h : d
′ → d) : QS(d) → QS(d

′), QS(h)(f) = fh, which is now clearly a
subfunctor of y(c), and the maps Q 7→ SQ and S 7→ QS are inverse. ■

Example 1.29. In the case C = O(X), we have by the previous proposition that a sieve on an
open set U ⊂ X is a subfunctor S of y(U) := Hom(−, U), i.e.

y(U)(V ) =

{
1 if V ⊂ U,

∅ otherwise,

where 1 denotes the singleton {V ↪→ U}. For example, if we set S(V ) = 1 for some V ⊂ U ,
the condition (ii) of subfunctoriality of S forces S(W ) = 1 for all open subsets W ⊂ V . Stated
differently, a sieve S on U is a subset S ⊂ Ω(X) such that W ⊂ V ∈ S implies W ∈ S, for any
open subset W ⊂ X. We say that a sieve S on U is a covering sieve if U = ∪V ∈SV .
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Theorem 1.30. A presheaf P on X is a sheaf if and only if for any open subset U ⊂ X
and every covering sieve S on U , the canonical inclusion iS : S ⇒ y(U) of functors induces an
isomorphism

Nat(y(U), P ) ∼= Nat(S, P ).

Remark 1.31. The induced map i∗S : Nat(y(U), P ) ∼= Nat(S, P ) is just η 7→ η ◦ iS . Here, iS is
given as (iS)V : S(V ) ↪→ y(U)(V ). We are abusing notation and writing S = QS , with QS as in
previous proposition.

Proof. We will prove both directions at the same time, by inspecting the equalizer diagram in
Set of the presheaf P :

E
∏

i P (Ui)
∏

i,j P (Ui ∩ Uj)
d

p

q

where (Ui)i is any open cover of U . The upshot of the argument that follows is that E is
isomorphic to Nat(S, P ) for some covering sieve S on U , and the rest follows from the Yoneda
lemma.

Since this is an equalizer in Set, we have

E =

{
(fi)i ∈

∏
i

P (Ui)

∣∣∣∣∣ fi|Ui∩Uj = fj |Ui∩Uj for all i, j

}
,

and d is the inclusion. We now replace the cover (Ui)i in this set with the covering sieve

S = {V ∈ Ω(X) | V ⊂ Ui for some i}

on U , in the following way. Define fV = fi|V and notice that since the elements fi coincide on
intersections Ui ∩Uj , the definition of fV is independent of the index i. The equalizer E is thus
in bijection with

E =

{
(fV )V ∈S ∈

∏
V ∈S

P (V )

∣∣∣∣∣ fV |V ′ = fV ′ for all V ′ ⊂ V

}
,

and the map d now maps (fV )V ∈S 7→ (fUi)i ∈
∐

i P (Ui) (note that the sets Ui are in S, and
fUi = fi). By previous proposition, we may regard S as a functor O(X)op → Set,

S(V ) =

{
1 if V ∈ S,

∅ if V /∈ S,

where 1 = {V ↪→ U}. In this way, for any V ∈ S, fV ∈ P (V ) can be (trivially) interpreted
as a map S(V ) → P (V ) which maps 1 7→ fV . This implies that the set E is in bijection with
Nat(S, P ), since any (fV )V ∈S ∈ E determines a unique morphism of presheaves Θ: S ⇒ P given
by ΘV (1) = fV , and the map d : Nat(S, P ) →

∏
i P (Ui) becomes d(Θ) = (ΘUi(1))i. We have

just shown that the equalizer of canonical maps p, q of a presheaf is Nat(S, P ). Now augment
the equalizer diagram above, by using iS :

Nat(S, P )
∏

i P (Ui)
∏

i,j P (Ui ∩ Uj)

Nat(y(U), P ) P (U)y

∼=

d
p

q

ei∗S
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Here, y denotes the Yoneda isomorphism, y(η) = ηU (1U ). Notice that the square commutes:

e(y(η)) = e(ηU (1U )) = (ηU (1U )|Ui)i = (ηUi(1Ui))i

d(i∗S(η)) = d(η ◦ iS) = ((ηUi ◦ (iS)Ui)(1Ui))i = (ηUi(1Ui))i,

which implies that e is the equalizer of p, q if and only if (iS)
∗ is an isomorphism. ■

Proposition 1.32. For any space X, Sh(X) is complete.

Proof. It is enough to show that Sh(X) is closed for equalizers and small products (see [1,
Chapter V, Section 2, Corollary 2]).

We first show that Sh(X) is closed for equalizers. Suppose p, q : F → G are two morphisms
of sheaves and take their equalizer E

e−→ F ⇒ G as presheaves (since Set is complete, so is
[O(X)op,Set], in particular it has equalizers). A basic fact about Hom-functors is that they
preserve limits, hence for any presheaf P on X, Nat(P,−) preserves limits, so the rows of the
following diagram are equalizers:

Nat(yU,E) Nat(yU,F ) Nat(yU,G)

Nat(S,E) Nat(S, F ) Nat(S,G)
Nat(S,e)

Nat(yU,e) Nat(yU,p)

Nat(yU,q)

Nat(S,p)

Nat(S,q)

(iS)
∗
E

∼=(iS)
∗
F

∼=(iS)
∗
G

Here, U ⊂ X is open, S is an arbitrary covering sieve of U , the vertical arrows are induced by
the inclusion iS : S ⇒ yU , and the diagram commutes (note that with right squares, either pick
both top or both bottom arrows). By Theorem 1.30, it is equivalent to show that (iS)

∗
E is an

isomorphism; to do so, we construct its inverse by diagram chase, similar as in proof of 5-lemma.
Suppose η ∈ Nat(S,E), so there is a ρη ∈ Nat(yU,F ) such that (iS)

∗
F (ρη). Now

(i∗S)G
(
Nat(yU, p)(ρη)

)
= Nat(S, p)

(
Nat(S, e)(η)

)
= Nat(S, q)

(
Nat(S, e)(η)

)
= (iS)

∗
G

(
Nat(yU, q)(ρη)

)
where the second equality holds because the bottom row is an equalizer. Since (iS)

∗
G is an

isomorphism and the top row is an equalizer, there is a unique Θη ∈ Nat(yU,E) such that
Nat(yU, e)(Θη) = ρη. The inverse to (iS)

∗
E is thus given by η 7→ Θη.

To see Sh(X) is closed for finite products, note that the product of presheaves F and G is
given pointwise, i.e. (F ×G)(U) = F (U)×G(U) for any open U ⊂ X, and this clearly yields a
presheaf. To see that F ×G is a sheaf, we consider the diagram:

F (U) F (U)×G(U) G(U)

∏
i F (Ui)

∏
i(F ×G)(Ui)

∏
iG(Ui)

∏
i,j F (Ui ∩ Uj)

∏
i,j(F ×G)(Ui ∩ Uj)

∏
i,j G(Ui ∩ Uj)

Here, the left and right columns are equalizers, and the horizontal arrows are projections, which
satisfy a universal property for products. That the middle column is also an equalizer follows
easily from these two properties. The same argument works for arbitrary small products. ■

14



Corollary 1.33. Any subobject of a sheaf in Sh(X) is isomorphic to a subsheaf of F .

Proof. Recall that a subobject is an equivalence class of monomorphisms into F ; let m : H ⇒ F
be its representative. The map m is a monomorphism if and only if the following square is
pullback in Sh(X):

H H

H F

1H

1H

m

m

⌟

Since I : Sh(X) → [O(X)op,Set] preserves limits, this square is also a pullback in [O(X)op,Set],
but pullbacks in this category are computed pointwise, som is pointwise monic, i.e.mU : H(U) →
F (U) is monic for any open subset U ⊂ X, which means that H is isomorphic to the subfunctor
S of F , given as S(U) = mU (H(U)). ■

Proposition 1.34. For any space X, Sh(X) is cocomplete.

Proof. It is enough to show that Sh(X) is closed for coequalizers and small coproducts (as
before, see [1, Chapter V, Section 2, Corollary 2]).

We first show that Sh(X) is closed for small coproducts. By Corollary 1.18, the sheafification
functor ΓΛ: [O(X)op,Set] → Sh(X) is left adjoint to the inclusion functor, so it preserves
colimits, and if F is a sheaf, ΓΛ(F ) ∼= F . The coproduct F

∐
G (in presheaves) of two sheaves is

just a pointwise disjoint union, and this yields a sheaf ΓΛ(F
∐
G), which must be the coproduct

of F and G (in sheaves) since ΓΛ preserves colimits:

F ∼= ΓΛF ΓΛ(F
∐
G) ΓΛG ∼= G

This means that the coproduct of two sheaves is the sheafification of their pointwise disjoint
union. A similar proof works for arbitrary small products.

For coequalizers, suppose F and G are sheaves, and let F ⇒ G → H be a coequalizer
diagram in the category of presheaves. Since ΓΛ preserves colimits, we get that

ΓΛ(F ) ∼= F ΓΛ(G) ∼= G ΓΛ(H)

is a coequalizer diagram in sheaves. Thus ΓΛ(H) is the wanted coequalizer. ■

1.5.2 Sh(X) is cartesian closed

Recall that a category C is said to be cartesian closed, if:

(i) C has a terminal object,

(ii) any two objects have a product in C,

(iii) any two objects have an exponential in C.

We have already seen that y(X) = Hom(−, X) is the terminal object in Sh(X), and that Sh(X)
is closed for finite products. That a product of sheaves is in fact just a product of presheaves,
suggests that the exponential for presheaves can also be used for sheaves. So we first study at
exponentials of presheaves.

Lemma 1.35. For any small category C, the category of presheaves [Cop,Set] is cartesian
closed.
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Proof. Recall that the product of two functors P,Q : Cop → Set is their pointwise product. To
find the formula for the exponential, we first assume that QP exists, so we have Nat(R×P,Q) ∼=
Nat(R,QP ) for all presheaves R. In particular, this holds for R = y(c) = HomC(−, c), and
composing this isomorphism with the Yoneda isomorphism yields the isomorphism

QP (c) ∼= Nat(y(c), QP ) ∼= Nat(y(c)× P,Q).

We now drop the assumption that QP exists and use this to define QP :

QP (c) = Nat(y(c)× P,Q),

and now QP : Cop → Set is clearly a presheaf, as a composition of functors. To show that QP

is an exponential object, define the evaluation map as

eval : QP × P ⇒ Q, evalc(η, y) = ηc(1c, y)

for all c ∈ C, η : y(c)×P ⇒ Q and y ∈ P (c). Naturality of eval is a straightforward computation;
hence eval is a morphism of presheaves. Lastly, given a natural transformation ϑ : R× P → Q,
we must provide the transpose map, i.e. a unique map θ : R ⇒ QP that makes the following
diagram commute.

R× P

QP × P Q

ϑθ×1P

eval

This means that we have to define, given c ∈ C and x ∈ R(c), an element θc(x) ∈ QP (c), i.e. a
natural transformation θc(x) : y(c)× P ⇒ Q. We define

(θc(x))d : HomC(d, c)× P (d) → Q(d), (θc(x))d(f, z) = ϑd(R(f)(x), z).

The naturality of this map in d follows from naturality of ϑ, and the triangle above commutes
since

evalc(θc(x), y) = (θc(x))c(1c, y) = ϑc(x, y).

This last computation (together with naturality of θ) also guarantees uniqueness of θ. ■

Proposition 1.36. If F is a sheaf and P is a presheaf on a space X, then the presheaf FP is
a sheaf.

Proof. Since O(X) is a small category, FP is defined (as a presheaf) as in the last lemma as

FP (U) = Nat(y(U)× P, F ),

where y(U) ∈ [O(X)op,Set] is the representable presheaf, given for any V ∈ Ω(X) as

y(U)(V ) = Hom(V,U) =

{
1 if V ⊂ U ,

∅ otherwise.

This implies that any η ∈ FP (U) is determined on all subsets V ⊂ U , since the map

ηV : Hom(V,U)× P (V ) → F (V )
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is a trivial map whenever V ̸⊂ U . Hence FP (U) ∼= Nat
(
P |O(U)op , F |O(U)op

)
, where P |O(U)op and

F |O(U)op denote the restriction of P and F to O(U)op. Notice that FP is the functor O(X)op →
Set which maps V ↪→ U to the map Nat

(
P |O(U)op , F |O(U)op

)
→ Nat

(
P |O(V )op , F |O(V )op

)
, which

is just the restriction η 7→ η|O(V )op .

To see that FP is a sheaf, let (Ui)i be an open cover of U , and suppose we have elements
τi ∈ Nat

(
P |O(Ui)op , F |O(Ui)op

)
with the property that τi|O(Ui∩Uj)op = τj |O(Ui∩Uj)op . We can

collate these τi to a τ ∈ Nat(P, F ) in the following way: if V ⊂ U is any open subset, we define
τV : P (V ) → F (V ) as f 7→ τV (f), where τV (f) is the collation of elements τi(f)|V ∩Ui – this
can be done since (V ∩ Ui)i is an open cover of V , due to the property that τi’s coincide on
intersections O(Ui ∩ Uj)

op, and because F is a sheaf. ■

Remark 1.37. The proof of the last proposition shows that, given sheaves F and G, their
exponential FG is the sheaf of germs of morphisms G⇒ F .

1.5.3 Sh(X) has a subobject classifier

Recall that a subobject classifier for a category C (with the terminal object 1) is a pair (Ω, true),
where Ω ∈ Obj(C) and true: 1 → Ω is a monomorphism in C, with the following property: for
any monomorphism m : c ↣ d, there is a unique characteristic morphism χm : d → Ω, i.e. a
morphism which makes the following diagram pullback:

c 1

d Ω

m

χm

true

⌟

Proposition 1.38. For a topological space X, the subobject classifier for Sh(X) is the pair
(Ω: O(X)op → Set, true : y(X) ⇒ Ω), where:

◦ Ω(U) are the open subsets of U , and Ω(V ↪→ U) : Ω(U) → Ω(V ) is the restriction to V ,

◦ trueU : y(X)U → Ω(U) maps (U ↪→ X) 7→ U .

Proof. Let m : S ⇒ F be any monomorphism of sheaves. By Corollary 1.33, we may assume
that S is a subsheaf of F , so that we have S(U) ⊂ F (U) for any open subset U ⊂ X. Define
the promised characteristic morphism χm : F ⇒ Ω as

(χm)U : F (U) → Ω(U),

(χm)U (f) = VU,f := ∪{V ⊂ U | f |V ∈ S(V )},

which is clearly a natural transformation, hence a morphism of sheaves. To demystify this
definition, we note that in the case F = C and S = C1, VU,f is the largest open subset of
U on which the continuous function f is continuously differentiable. By Proposition 1.8 that
characterized subsheaves, we have that any f ∈ F (U) satisfies f |VU,f

∈ S(V |U,f ). Now consider
the pullback P of true along χm:

P y(X) P (U) 1

F Ω F (U) Ω(U)χm

true

(χm)U

trueU

⌟ ⌟
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Here, the left diagram is in Sh(X), while the right one is in Set. This pullback in Set is just

P (U) = {f ∈ F (U) | (χm)U (f) = U} = {f ∈ F (U) | VU,f = U} = S(U),

where the last equality follows from f |VU,f
∈ S(V |U,f ). In other words, the pullback P is exactly

the subsheaf S.
To show uniqueness of χm, suppose S is the pullback of true along some other morphism

ψ : F ⇒ Ω. This means S(U) = {f ∈ F (U) | ψU (f) = U}, and it is clear that for S(U) as above,
this implies ψU (f) = VU,f , so ψ = χm. ■

2 Brief introduction to topos theory

This section serves to give elementary definitions of sheaves on Grothendieck sites, so we will
keep the upcoming discussion relaxed and brief. Let C denote an arbitrary category.

2.1 Grothendieck topologies on categories

The task at hand is to introduce the notion of a sheaf on C. First off, a presheaf on C is defined
as a functor Cop → Set, so that the category of presheaves [Cop,Set] on C is just a functor
category, as before.

To generalize sheaves from a topological space to an arbitrary category, we notice that by
Theorem 1.30 we have to introduce the notion of a covering sieve on an object c of C (we
already know what a sieve on c is, see Definition 1.27 and Proposition 1.28). Consider the case
C = O(X) for a given topological space X; the properties of the set J(U) of all covering sieves
on an open subset U ⊂ X will provide the means of axiomatization of covering sieves on objects
of arbitrary categories. In the spirit of category theory, we consider morphisms of O(X), so let
iV,U : V → U be any inclusion of open subsets in X, and define the pullback of a sieve S from
U to V as

(iV,U )
∗(S) = {W ∈ S |W ⊂ V } = {W ∩ V |W ∈ S},

which is clearly a sieve on V . The important properties of J(U) are the following:

(i) Ω(U) is a covering sieve, i.e. Ω(U) ∈ J(U).

(ii) Pullbacks preserve covering sieves, i.e. if S ∈ J(U), then (iV,U )
∗(S) ∈ J(V ).

(iii) If S is a covering sieve, and R is a sieve on U such that the sieve (iV,U )
∗(R) covers U for

any V ∈ S, then R is a covering sieve as well.

It is a triviality that these properties indeed hold for the set J(U) of all covering sieves on U .
This now enables us to define covering sieves of an arbitrary category C. Before doing so, we
define the pullback of a sieve S on c along an arrow f : d→ c in C as

f∗(S) = {g | cod(g) = d, fg ∈ S},

which is evidently a sieve on d.

Definition 2.1. A (Grothendieck) topology on a category C is a map J which assigns to any
object c a collection J(c) of sieves on c, such that the following holds.

(i) The maximal sieve tc = {g | cod(g) = c} is in J(c).

(ii) (Stability) Pullbacks preserve covering sieves, i.e. if S ∈ J(c), then f∗(S) ∈ J(d) for any
arrow f : d→ c.

18



(iii) (Transitivity) If S ∈ J(c), and R is a sieve on c such that f∗(R) ∈ J(d) for any arrow
f ∈ S with domain d, then R ∈ J(c).

A site on C is a pair (C, J), i.e. a category C endowed with a topology J . For any object c in
C, elements of J(c) are called covering sieves of c, and we say that elements S ∈ J(c) cover the
object c. Furthermore, we say that a sieve S on c covers an arrow f : d→ c, if f∗(S) ∈ J(d).

Remark 2.2. Any Grothendieck topology is upwards closed, i.e. if S ∈ J(c) then any larger
sieve R ⊃ S is also in J(c). To show this using the transitivity axiom, take any f : d → c from
S and note that idd ∈ f∗(S), hence f∗(S) must be the maximal sieve on d, but f∗(S) ⊂ f∗(R),
hence f∗(R) is also the maximal sieve on d, so f∗(R) ∈ J(d).

Trivially, a sieve S covers c if and only if S covers idc. In the language of sieves covering
arrows, the axioms read:

(ia) For any sieve S on c and f ∈ S, S covers f .

(iia) If S covers an arrow f : d→ c, it covers the composition f ◦ g, for any arrow g : e→ d.

(iiia) If S covers an arrow f : d→ c and R is a sieve on c covering all arrows of S, R covers f

For example, to show (ia) follows from (i), we have to check that f∗(S) is a covering sieve on d
for any f ∈ S with f : d→ c, but since fg ∈ S for all g whenever the composition is defined, we
must have f∗(S) = td ∈ J(d) by (i). For the converse implication, we have by assumption that
the maximal sieve tc covers f = idc ∈ tc, hence tc = id∗c(tc) ∈ J(c). We leave it to the reader to
check the equivalences (ii)↔(iia) and (iii)↔(iiia).

We also note that if R,S ∈ J(c), then R ∩ S ∈ J(c). Indeed, for any f ∈ R, we must have
f∗(R ∩ S) = f∗(S) ∈ J(c) by (ii), hence R ∩ S ∈ J(c) by (iii).

2.2 Sheaves on sites

Mimicking the content of Theorem 1.30, we can now define sheaves on sites. Recall from Propo-
sition 1.28 that any sieve S on c can be thought of as a subfunctor of y(c).

Definition 2.3. A sheaf on a site (C, J) is a presheaf F : Cop → Set, such that for every
object c in C and any covering sieve S ∈ J(c), the inclusion S ⇒ y(c) induces an isomorphism
Nat(S, F ) ∼= Nat(y(c), F ).

We can provide a more intuitive way of thinking about sheaves on sites. The following
definitions mimic the topological setting of a family of functions that match on intersections,
and their collation to a global function.

Definition 2.4. Let P be a presheaf on a site (C, J) and let a sieve S ∈ J(c) cover an object
c. A matching family for S is a family of elements (xf )f∈S where xf ∈ P (dom(f)), such that
for any g : e→ d in C, there holds

xf · g := P (g)(xf ) = xfg.

(Note that fg ∈ S, because S is a sieve.) An amalgamation of a matching family x for a covering
sieve S of c is an element x ∈ P (c), such that for any f ∈ S, there holds

x · f := P (f)(x) = xf .
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Remark 2.5. Just as a sieve S on c can be seen as a subfunctor of y(c), a matching family
(xf )f∈S can be seen as a natural transformation Θ: S ⇒ P (defined as Θd(f) = xf , where
d = dom(f)). This means that in a presheaf, every matching family for any cover of any object
has a unique amalgamation, if and only if for all covering sieves S of objects c, any natural
transformation Θ: S ⇒ P has a unique extension to y(c), that is:

S P

y(c)

Θ

This means that a presheaf P is a sheaf if and only if every matching family for any cover of
any object has a unique amalgamation. The latter can also be expressed diagrammatically, by
requiring that for any object c in C and each covering sieve S of c, the following diagram is
equalizer in Set:

P (c)
∏

f∈S
∏

f,g f∈S,
dom f=cod g

P (dom g)e

a

p

Here, the maps are given as

e(x) = (x · f)f∈S , p(xf )f∈S = (xfg)f,g, a(xf )f∈S = (xf · g)f,g.

Remark 2.6. The sheaves on (C, J) form a category Sh(C, J), where the maps are just natural
transformations, so that this is a full subcategory of [Cop,Set], and we again have the inclusion
functor I : Sh(C, J) → [Cop,Set]. Any category, equivalent to the category Sh(C, J) of sheaves
on some site, is called a Grothendieck topos.

Similarly to the case C = O(X), we have the following theorem.

Theorem 2.7. The inclusion functor I : Sh(C, J) → [Cop,Set] has a left adjoint

a : [Cop,Set] → Sh(C, J),

called the associated sheaf functor. The composition a ◦ I : Sh(C, J) → Sh(C, J) is naturally
isomorphic to the identity functor.

The construction of the left adjoint functor a of I is beyond the scope of this exposition; so
is the fact that Sh(C, J) is an elementary topos. For the construction of the adjoint functor a,
see [2, Chapter III, Section 5], and for the construction of subobject classifier, see [2, Chapter
III, Section 7].
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