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Abstract

This article serves as an invitation to the field of research that was introduced by Re-
nault in [1]. Generalizing topological groups, topological groupoids describe continuously
parametrizable symmetries which may fail to be global. A natural construction of a group
C∗-algebra C∗(G), which captures the information about unitary representations of a group
G on Hilbert spaces and naturally generalizes Fourier transform, may be extended to the
groupoid setting using the notion of a Haar system – we provide examples thereof.

1 Group C∗-algebras

Groupoid C∗-algebras generalize the construction of a group C∗-algebra, so we begin our dis-
cussion with a relaxed motivation – a good reference for the results stated here is [2]. In this
section, G will denote a locally compact Hausdorff, second-countable topological group.

A Haar measure on the Borel σ-algebra B(G) of G is a measure µ : B(G) → [0,∞] that
satisfies the following properties:

(i) Regularity. For any open set U ⊂ G:

µ(U) = sup{µ(K) | K ⊂ U, K is compact},

for any Borel set S ∈ B(G):

µ(S) = inf{µ(U) | S ⊂ U, U is open},

and for any compact set K ⊂ G, µ(K) is finite. If this holds, we say µ is a Radon measure.

(ii) Left-invariance: µ(gS) = µ(S) for any g ∈ G and S ∈ B(G).

By Haar’s theorem, such a measure always exists on G and is unique up to a positive multiplica-
tive constant – this is proved by constructing a linear functional I on the set Cc(G) of compactly
supported functions on G, such that I(f) ≥ 0 if f ≥ 0, and I(f ◦Lg) = I(f) for any g ∈ G, and
then invoking Riesz’ representation theorem.∗ A Haar measure gives rise in the usual way to
the integral

∫
G
: Cc(G) → C – we will use the notation∫

G
f(x) dx

∗Note that in the important case when G is a Lie group, this functional is easily constructed by integrating f
over a left-invariant differential n-form, where n = dimG.
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and keep the µ implicit. Note that left-invariance of µ implies that the integral is also left-
invariant, i.e. ∫

G
f(gx) dx =

∫
G
f(x) dx

for any f ∈ Cc(G) and g ∈ G. It is important to note that in general, the Haar integral
isn’t right-invariant, but rather that uniqueness (up to a positive multiplicative constant) of the
Haar measure implies that there exists a continuous homomorphism ∆: G → (0,∞), called the
modular function, such that ∫

G
f(xg) dx = ∆(g)

∫
G
f(x) dx

for any g ∈ G. It is easy to see that if G is compact, then ∆ ≡ 1, so that the Haar integral is
also right invariant.†

Defining the norm on Cc(G) as ∥f∥1 =
∫
G |f(x)|dx, the product as the convolution:

(f ∗ h)(x) =
∫
G
f(y)h(y−1x) dy,

and involution as:
f∗(x) = f(x−1)∆(x−1),

it is straightforward to see that the space Cc(G) becomes a normed ∗-algebra (here, the property∫
G f(x) dx =

∫
G f(x−1)∆(x−1) dx is relevant). The completion of Cc(G) with respect to this

norm is ∗-isomorphic to L1(G) – the importance of this space is stressed in the next example.

Example 1.1 (Abelian groups and Fourier transform). In the case when G is abelian, it is not
hard to show that there is a bijection from the set Ĝ := Hom(G,S1) (continuous homomor-

phisms, called characters) to the set L̂1(G) of nonzero multiplicative functionals on L1(G); it is
given by

ω 7→ hω, where hω(f) =

∫
G
f(x)ω(x) dx.

If we equip the domain with the compact-open topology (i.e. the topology of uniform convergence
on compacts) and the codomain with the weak-∗ topology, it is possible to show that this map
is a homeomorphism ([2, Lemma 1.78]).

On the other hand, the Gelfand transform on a (non-unital) commutative Banach algebra
A maps a ∈ A to â ∈ C0(Â), â(h) = h(a), where Â denotes the set of nonzero multiplicative
functionals on A, and C0(Â) denotes the set of all continuous (in the weak-∗ topology on Â)
functions on Â which vanish at infinity (i.e. the set {x ∈ Â | |f(x)| ≥ ε} is compact for any
ε > 0). Picking A = L1(G) and keeping in mind the identification from the previous paragraph,
the Gelfand transform of f ∈ L1(G) is a function f̂ ∈ C0(Ĝ), given by

f̂(ω) =

∫
G
f(x)ω(x) dx.

In the case G = R, it’s easy to see that Ĝ = {x 7→ eikx | k ∈ R} and R̂ is homeomorphic to R,
so that the Gelfand transform L1(R) → C0(R) is just the well-known Fourier transform. ♢

†G = Rn provides an example of a non-compact group with a right-invariant Haar integral. On a matrix Lie
group, it is possible to show that ∆(g) =

∣∣det(Ad(g−1))
∣∣, where Ad: G → GL(g) is given by Ad(g)(X) = gXg−1.
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We now use the norm ∥.∥1 to construct another norm on Cc(G) which captures information
about its representations on Hilbert spaces. Recall that a representation π : Cc(G) → B(H) is
said to be cyclic, if there exists a vector ξ ∈ H such that π(Cc(G))ξ = H, and norm-decreasing,
if ∥π(f)∥ ≤ ∥f∥1 for all f ∈ Cc(G).

Definition 1.2. The universal C∗-norm ∥.∥u on Cc(G) is given by

∥f∥u = sup{∥π(f)∥ | π : Cc(G) → B(H) is a cyclic and norm-decreasing representation}.

Notice that the norm-decreasing condition in the definition above ensures that ∥f∥u ≤ ∥f∥1 for
any f ∈ Cc(G), so that ∥.∥u is well-defined (note that we cannot rely here on the fact that every ∗-
homomorphism between C∗-algebras is bounded, because Cc(G) is not complete in the L1-norm).
Since every representation is a direct sum of cyclic representations, we also have ∥π(f)∥ ≤ ∥f∥u
for any norm-decreasing representation π; the cyclic condition in the definition ensures that
the supremum runs over a set, because any cyclic representation is unitarily equivalent to a
subrepresentation of one fixed Hilbert space.

The only nontrivial thing needed to be checked is positive definiteness, which is done using
regular representations. It follows straight from the definition of ∥.∥u that (Cc(G), ∥.∥u) satisfies
all other axioms of a normed ∗-algebra.

Definition 1.3. The group C∗-algebra of G is the completion of Cc(G) with respect to the
universal norm ∥.∥u. We denote this completion by C∗(G).

The mathematical importance of C∗(G) is in the following:

Proposition 1.4. There is a bijective correspondence between unitary representations of G and
nondegenerate representations of C∗(G)

Here, a unitary representation of G is a (strongly) continuous homomorphism u : G → U(H)
into the set of unitary operators on a Hilbert space H, with the latter endowed with the strong
operator topology; a nondegenerate representation π : A → B(H) of a C∗-algebra A is such that
π(A)H = H.

The idea of proof of this proposition rests upon the notion of a vector-valued integral, which
we briefly explain. If D is a Banach space, we consider the set of all compactly supported
continuous functions Cc(G;D) – there exists a linear map

∫
G
: Cc(G;D) → D, characterized by

the property

φ

(∫
G
v(x) dx

)
=

∫
G
φ(v(x)) dx for all v ∈ Cc(G;D) and φ ∈ D∗.

(See e.g. [2, Lemma 1.91].) The bijection whose existence is asserted in the above proposition,
is then given by mapping u : G → U(H) to πu : Cc(G) → B(H), called the integrated form of u,
which is given by

πu(f) =

∫
G
f(x)ux dx,

where ux = u ◦ Lx ∈ Cc(G;B(H)). For details of the proof, see [3, Section C.3]).
To conclude this motivating section, we note that in the case when G is abelian, C∗(G)

can be shown to be ∗-isomorphic to C0(Ĝ), with the isomorphism given as the extension of the
Gelfand transform ̂: Cc(G) → C0(Ĝ) to the completion C∗(G) (see [3, Example C.20]).
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2 Topological groupoids

Definition 2.1. A groupoid is a small category (i.e. the classes of its objects and morphisms
are sets) where every morphism is invertible. More precisely, a groupoid consists of:

(i) a set G of morphisms and a set M of objects,

(ii) two maps s, t : G → M , called the source and target maps, which prescribe to any mor-
phism its domain and codomain (respectively),

(iii) a unit map 1: M → G, which assigns to every object x ∈ M the identity morphism
1x = idx, and an inversion map inv : G → G, which assigns to any morphism g ∈ G its
inverse g−1,

(iv) a partial multiplication map m : G∗G → G, where G∗G = {(g, h) ∈ G×G | s(g) = t(h)} is
the set of pairs of composable morphisms, which sends (g, h) ∈ G ∗G to their composition
gh,

so that the following properties hold for any g, h, k ∈ G and x ∈ M :

(i) s(hg) = s(g) and t(hg) = t(h),

(ii) s(1x) = t(1x) = x and g1s(g) = 1t(g) = g,

(iii) for any g ∈ G there exists a unique g−1 ∈ G such that s(g−1) = t(g), t(g−1) = s(g),
g−1g = 1s(g) and gg−1 = 1t(g),

(iv) k(hg) = (kh)g whenever s(k) = t(h) and s(h) = t(g).

Given x ∈ M , we also define s-fibre over x as Gx := s−1(x), t-fibre over x as Gx := t−1(x), and
the vertex group at x as Gx

x := Gx ∩Gx. Notice that the set of all morphisms from x to y is just
Gy

x := Gx ∩Gy. We will sometimes denote a morphism g ∈ Gy
x by g : x → y.

A topological groupoid is a groupoid with G and M topological spaces, such that the maps
s, t, 1, inv and m (with the relative topology on G ∗ G ⊂ G × G) are continuous – we say that
the topology on the groupoid is compatible with the groupoid structure.

Remark 2.2. We write G ⇒ M for a groupoid, to mean the whole structure:

G ∗G G M Gm

inv

s

t

1

Furthermore, in a Hausdorff topological groupoid, we may view M as a closed subspace of G:

Lemma 2.3. Let G ⇒ M be a topological groupoid. Then 1: M → G is a closed embedding if
and only if G is Hausdorff.

Proof. Recall that a topological space is Hausdorff if and only if any converging net has a unique
limit point. If G is Hausdorff, suppose that (1xα)α∈Λ is a net in 1M converging to g ∈ G. By
continuity of s, we have xα = s(1xα)

α−→ s(g), and since G is Hausdorff, the limit point g is
unique, hence g = 1s(g). Conversely, suppose that (gα)α∈Λ is a converging net in G, with limit

points h and k. By continuity of operations, g−1
α gα

α−→ h−1k, and since g−1
α gα = 1s(gα) and 1M

is closed by assumption, this implies h−1k ∈ 1M , hence h = k. ■

Note that if G is Hausdorff, then by previous lemma, so is M . This implies also that G ∗G
is closed, as it is an incidence set of two continuous maps.
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Example 2.4.

(i) Base groupoid. Let M be a topological space. Defining G = {1x | x ∈ M} and endow-
ing it with the obvious groupoid structure and topology inherited from M , we obtain a
topological groupoid.

(ii) Trivial groupoid. Let M be a topological space and G a topological group (G may not be
acting on M). We define the trivial groupoid M×G×M ⇒ M with the product topology,
and the groupoid structure given by:

• s and t are projections to the third and first factor (resp.),

• the unit map is given by 1x = (x, e, x) and inverse map by (y, g, x)−1 = (x, g−1, y),

• the multiplication is given by (z, h, y)(y, g, x) = (z, hg, x).

It is straightforward to check that the groupoid axioms are satisfied, and that the topology
is compatible with the groupoid structure. Note that in the case when M = {∗} is a
singleton, we can identify {∗}×G×{∗} ⇒ {∗} with the group G, so that groupoids are a
generalization of groups. In case G = {e} is a trivial group, we call the obtained groupoid
a pair groupoid and just write M ×M ⇒ M .

(iii) Action groupoid. Let M be a topological space and G a topological group acting on it
(from the left). We define a topological groupoid G ×M ⇒ M by endowing it with the
product topology, and the compatible groupoid structure given by:

• s(g, x) = x, t(g, x) = gx,

• the unit map is given by 1x = (e, x) and inverse map by (g, x)−1 = (g−1, gx),

• the multiplication is given by (g2, g1x)(g1, x) = (g2g1, x).

We will write G⋉M to mean the obtained topological groupoid. It is easy to see that the
s-fibres are (G ⋉M)x = G × {x}, that the t-fibre of G ⋉M at x may be identified with
the orbit OrbG(x), and that the vertex group (G ⋉M)xx = {(g, x) | g−1x = x} at x may
be identified with the stabilizer group of x.

As a concrete example, the action of R on S1 given by (t, z) 7→ e2πitz, provides us
with a groupoid structure on the cylinder, with the s-fibre at z given by a vertical line
(R ⋉ S1)z = R× {z}, the t-fibre at z given by (R ⋉ S1)z = {(t, w) | e2πitw = z} (visually
depicted as a “spiral” on the cylinder), and (R⋉ S1)zz = Z× {z}.

(iv) The fundamental groupoid. Let M be a connected topological manifold. A relative homo-
topy H : [0, 1]2 → M between two paths γ, δ : [0, 1] → M is a homotopy that preserves the
basepoints, i.e. H(·, 0) = γ,H(·, 1) = δ and H(0, ·) = γ(0) = δ(0), H(1, ·) = γ(1) = δ(1).
Define Π(M) as the set of all equivalence classes of relatively homotopic paths in M , and
the groupoid structure on Π(M) ⇒ M as

• s[γ] = γ(0), t[γ] = γ(1),

• 1x = [cx], where cx is the constant path to x, and [γ]−1 = [γ̄], where [γ̄] is the inverse
path to γ,

• the multiplication is given by concatenation of paths, i.e. [δ][γ] = [γ ∗ δ].
As an interesting fact, we note that the topology on Π(M) is given in the following way.

If p : M̃ → M is a universal cover of M and Aut(π) denotes the deck transformation

group, then the orbit space (M̃ × M̃)/Aut(p) of the diagonal action‡ can be shown to
be in bijection with Π(M), so we endow Π(M) with the topology of the orbit space.

‡The diagonal action Aut(p)× (M̃ × M̃) → M̃ × M̃ is given by (ϕ, (e1, e2)) = (ϕ(e1), ϕ(e2)).
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Furthermore, it follows from the theory of covering spaces that the s-fibre Π(M)x at x is
homeomorphic to the universal cover of M with base point x, and that the vertex group
Π(M)xx is the fundamental group π1(M,x) of M (with base point x).

There are many more natural and interesting examples which arise from the theory of fibre
bundles (e.g. the gauge groupoid or the frame groupoid), but we will omit them here; further-
more, it is possible to impose a differentiable structure on a groupoid G ⇒ M , in which case
the groupoid is called a Lie groupoid – most interesting examples of groupoids actually arise in
the smooth category.

3 Haar systems

Throughout this section and in later sections, G ⇒ M will be a second countable, locally
compact Hausdorff groupoid. In order to construct a convolution algebra on Cc(G), we need
an analogue of the Haar measure for locally compact groupoids. There are several possible
definitions of such an analogue; we will use the following one.

Definition 3.1. A left-invariant Haar system on G ⇒ M is a family µ = {µx | x ∈ M} of
Radon measures on G, such that:

(i) Full support. For any x ∈ M , the support supp(µx) := {g ∈ G | µx(U) > 0 for any nbd. U of g}
of µx equals the t-fibre Gx, i.e. supp(µx) = Gx.

(ii) Continuity. For any f ∈ Cc(G), the map µ(f) : M → C, given by µ(f)(x) =
∫
G f(g) dµx(g),

is continuous.

(iii) Left-invariance. For any Borel function f : G → C and g ∈ G, there holds∫
G
f(h) dµt(g)(h) =

∫
G
f(gh) dµs(g)(h).

Remark 3.2. The continuity condition (ii) ensures that we have a map µ : Cc(G) → Cc(M).
Together with the condition (i), this means that µ may be seen as integration on the t-fibres. The
product gh, which appears in condition (iii), is well-defined – indeed, since µs(g) is supported
only on t−1(s(g)), the integral runs over all h ∈ t−1(s(g)), hence t(h) = s(g). Furthermore,
the left-invariance property (iii) is clearly equivalent to µy(S) = µx(gS) for any g : x → y and
S ∈ B(G), where we have written gS = {gh | t(h) = s(g), h ∈ S}

Remark 3.3 (Right-invariance). Similarly as with groups where every left-invariant Haar mea-
sure µ gives rise to a right-invariant Haar measure (given by µ−1(S) = µ(S−1) for any S ∈ B(G)),
we can associate to every left-invariant Haar system on G ⇒ M a set of Radon measures
{µx | x ∈ M} on G, by defining µx(S) = µx(S−1), for all S ∈ B(G). It is easy to see that we
then have supp(µx) = Gx for all x ∈ G (i.e. the set of measures is supported on the s-fibres),
and ∫

G
f(h) dµs(g)(h) =

∫
G
f(hg) dµt(g)(h)

for any g ∈ G. The continuity condition also holds, which comes as a consequence of the easily
verified pushforward formula: ∫

G
f dµx =

∫
G
(f ◦ inv) dµx.

Such a system of measures on G ⇒ M is called a right-invariant Haar system. To sum up,
left-invariant and right-invariant Haar systems are in a bijection.
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Example 3.4.

(i) Groups. If G is a locally compact Hausdorff group, then as a groupoid, G admits a Haar
system {µ}, where µ is a Haar measure on the group G (cf. section 1).

(ii) Action groupoids. If G is a locally compact Hausdorff group, acting on a locally compact
Hausdorff space M from the left, then G×M ⇒ M admits a right-invariant Haar system
{µ× δx | x ∈ M}, where µ is a right-invariant Haar measure on G. It’s easy to see that for
every f ∈ Cc(G ×M), µ(f)(x) =

∫
G f(h, x) dµ(h) and that right-invariance of this Haar

system is just
∫
G f(h, gx) dµ(h) =

∫
G f(hg, x) dµ(h), for every g ∈ G.

(iii) Pair groupoids. Given a Radon measure µ on a locally compact Hausdorff space M with
full support (i.e. supp(µ) = X), we have a right-invariant Haar system {µ × δx | x ∈ M}
on the pair groupoid M ×M ⇒ M .

Unlike with Haar measures on locally compact Hausdorff groups, a Haar system on a groupoid
may not exist, and in case it does, it may not be unique (non-uniqueness is clear from example
(iii) above). The following lemma gives a necessary condition for the existence of a Haar system.

Lemma 3.5. If a Haar system exists on G ⇒ M , then the source and target maps are open.

Proof. Let U be an open subset of G and let x ∈ t(U) and pick g ∈ U with t(g) = x. Since
G is locally compact Hausdorff, we may pick a nonnegative f ∈ Cc(G) with compact support
supp(f) ⊂ U and f(g) = 1, by Urysohn’s lemma. Since supp(µx) = Gx, we have µ(f)(x) > 0.
But µ(f) is continuous and suppµ(f) ⊂ t(U), so x is an interior point of U . Since x ∈ t(U) was
arbitrary, t(U) is open. The same argument works for the right-invariant Haar system and the
openness of source map. ■

Openness of the source and target maps are not a very exciting feature of a topological
groupoid – in fact, when dealing with Lie groupoids, we always assume that the source and
target maps are submersions, so that their fibres and the set M ∗M are embedded submanifolds
of G (otherwise we cannot make sense of smoothness of partial multiplication).

Sufficient conditions for a topological groupoid to admit a Haar system may be found in [4].
Furthermore, a Lie groupoid always admits a Haar system, which may be proven using densities.
We will not prove these statements in the present document, and will rather focus on topological
groupoids that admit particularly well-behaved Haar systems.

4 Étale groupoids

An étale groupoid, roughly speaking, has dimensions of the space of morphisms and the space
of objects are the same. In the topological category, we mean the following.

Definition 4.1. A topological groupoid G ⇒ M is étale, if the source and target maps are local
homeomorphisms.

Remark 4.2. The word étale means spread-out or flat in French.

It is easy to see that as soon as one of the source or target maps is a local homeomorphism,
so is the other; just recall the relation s = t ◦ inv and note that inv is a homeomorphism.
Furthermore, if G ⇒ M is étale, it follows immediately that s and t are open maps. The next
proposition shows that any étale groupoid admits a Haar measure.
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Proposition 4.3. For a second-countable, locally compact Hausdorff groupoid, the following
are equivalent.

(i) G ⇒ M is étale.

(ii) The partial multiplication map m : G ∗G → G is a local homeomorphism.

(iii) G has a basis of open bisections.

(iv) 1M ⊂ G is open and G ⇒ M admits a Haar system.

Remark 4.4. A subset A ⊂ G is said to be a bisection, if s|A and t|A are injective (i.e. no two
morphisms in A have the same source or target). It is an easy exercise to show that A ⊂ G is a
bisection if and only if AA−1, A−1A ⊂ 1M , where we have defined

AB = {ab | s(a) = t(b), a ∈ A, b ∈ B}.

Proof. (i) → (ii): If (g, h) ∈ G ∗ G, by assumption there exist compact neighborhoods U of g
and V of h, such that s|U and t|V are homeomorphisms onto their images. Then U ∗ V :=
(G ∗G) ∩ (U × V ) is a compact neighborhood of (g, h) in G ∗G, on which the restriction of m
is injective. Indeed, if g1h1 = g2h2, applying the map t to the both sides of this identity yields
g1 = g2, and applying s yields h1 = h2. This restriction is closed as a map from a compact to a
Hausdorff space, hence a homeomorphism.

(ii) → (iii): If U is a neighborhood of a given point g ∈ G, by assumption there exist open
neighborhoods V ⊂ U of g and W ⊂ U−1 of g−1, such that the restriction of m to V ∗ W is
injective. Then V ∩W−1 ⊂ U is the wanted neighborhood of g.

(iii) → (iv): To show that 1M ⊂ G is open, note that for any 1x, by assumption there exists
an open bisection S that is a neighborhood of 1x with SS−1 ⊂ 1M . The set SS−1 is open in G
(this is true because clearly (iii) implies (i), and we have already proved that (i) implies (ii)).

Since 1M is open, the spaces Gx and Gx are discrete (and thus by second countability,
countable), for any x ∈ M . Indeed, observe that any g : x → y defines a homeomorphism Gx →
Gy, given by h 7→ gh, and that in the induced topology on Gx, the subset {1x} = 1M ∩Gx ⊂ Gx

is open. This implies that the singleton {g} is open in Gy as the image of {1x} via the mentioned
homeomorphism. Similarly, g : x → y defines a homeomorphism Gy → Gx, given by h 7→ hg,
and {1x} is open in Gx, so Gx is discrete.

To construct the Haar system, we define µx as the counting measure on Gx, for any x ∈ M .
Using a partition of unity subordinate to a countable open cover by bisections of G, we may
write a given f ∈ Cc(G) as a finite sum of functions supported on bisections. Therefore it is
enough to consider functions f ∈ Cc(G) which are supported in an open bisection S. For such a
function, we have that for any x ∈ M with f |Gx ̸= 0, there holds

µ(f)(x) =
∑

h∈S∩Gx

f(h) = f(hx),

where hx ∈ S∩Gx denotes the unique element at which f |S∩Gx is nonzero. In other words, there
holds µ(f)◦ t = f , and by using the fact that t is a local homeomorphism, this proves continuity
of f (note that we are again using that (iii) implies (i)). Finally, to show left-invariance of this
Haar system, just note again that if g : x → y is a morphism, it induces a bijection Gx → Gy,
h 7→ gh, and so ∑

h∈Gy

f(h) =
∑
h∈Gx

f(gh).
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(iv) → (i): We may assume that for any x ∈ M , the measure µx in the given Haar system is
a counting measure on Gx. Indeed, since 1M is open, Gx is discrete and since supp(µx) = Gx,
every point in Gx has a positive µx-measure, so we can define a positive (continuous) function
α = µ(χ1M ) where χ1M is the characteristic function on 1M . This means that the measure
νx := α(x)−1µx has the property νx({1x}) = 1, and thus by left-invariance νx({g}) = 1, for any
g ∈ Gx.

Let’s prove that r is locally injective (we will do so similarly as in Lemma 3.5, which showed
that r is open). Let g ∈ G and x = t(g). Since G is locally compact Hausdorff, we can find a
compact neighborhood U of g which intersects Gx only in g. Then νx(U) = 1 and by continuity
of the Haar system, we may assume (by shrinking U if necessary) that νy(U) = 1 for any
y ∈ t(U), which shows that r|U is injective. The proof for the map s is similar. ■

Remark 4.5. Topological groupoids with the property that 1M is open in G are sometimes
called r-discrete. The implication (iv) → (i) in the proof above shows that on such a groupoid,
the s- and t-fibres are discrete, and that if a Haar system exists, it is uniquely determined up
to a positive multiplicative function on the space M of objects, and may hence be chosen as the
counting measure on each Gx. As we have shown, the only feature that distinguishes r-discrete
from etale groupoids, is precisely the existence of a Haar measure.

Example 4.6.

(i) The base groupoid of a locally compact Hausdorff space is étale.

(ii) A discrete group is an étale groupoid over a one point space.

(iii) If a discrete group G acts on a locally compact Hausdorff space M , the action groupoid
G×M ⇒ M is étale.

There are other important examples of étale groupoids, including the groupoid of local bisections
of G ⇒ M , the Haeflinger groupoid, and the étale monodromy groupoid (see [5, p. 114 and 134]
for more details).

5 Groupoid C∗-algebras

To produce a C∗-algebra from a second-countable, locally compact Hausdorff groupoid G ⇒ M
with a Haar system µ, we must give Cc(G) a ∗-algebra structure. Although this structure is
dependent upon the chosen Haar measure µ, we will just write Cc(G) instead of e.g. Cc(G,µ).
Naturally, we define for f1, f2 ∈ Cc(G) their convolution by§

(f1 ∗ f2)(g) =
∫
G
f1(h)f2(h

−1g) dµt(g)(h), (1)

and for any f ∈ Cc(G), its involution by

f∗(g) = f(g−1). (2)

It is clear that if f ∈ Cc(G), then f∗ ∈ Cc(G) with supp(f∗) = supp(f)−1. However, it is not so
immediate that f1 ∗ f2 is continuous if f1, f2 ∈ Cc(G); the latter follows from the following.

§In terms of the associated right-invariant action, (f1 ∗ f2)(g) =
∫
G
f1(gh

−1)f2(h) dµs(g)(h).
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Lemma 5.1. Let G ⇒ M be a second-countable, locally compact Hausdorff groupoid with a
Haar system µ. If F ∈ Cc(G×t G), then Λ(F ) ∈ Cc(G), where

Λ(F )(g) =

∫
G
F (h, g) dµt(g)(h),

and we have denoted G×t G = {(g, h) ∈ G×G | t(g) = t(h)}.

Proof. Since G is second-countable, G × G is normal. By Tietze extension theorem and the
closedness of G ×t G in G ×G, we extend F to a bounded continuous function on G ×G, and
since G ×G is paracompact, we may use a partition of unity to obtain a compactly supported
function which equals F on G ×t G. Hence we may assume without loss of generality that
F ∈ Cc(G×G).

Now the function G → Cc(G), g 7→ (h 7→ F (h, g)) is continuous with respect to the compact-
open topology on Cc(G), hence the function Φ: G×M → C, given by (g, x) 7→

∫
G F (h, g) dµx(h)

is also continuous, and so is Λ(F ) = Φ ◦ ιt, where ιt : G → G×M is defined as g 7→ (g, t(g)). ■

Proposition 5.2. The vector space Cc(G), endowed with operations (1) and (2), is a ∗-algebra.

Proof. By the previous lemma, the convolution f1 ∗ f2 is continuous (just take F (h, g) =
f1(h)f2(h

−1g)). Since (f1 ∗ f2)(g) is clearly nonzero only if there exists an arrow h ∈ G such
that f1(h) and f2(h

−1g) are both nonzero, we have supp(f1 ∗ f2) ⊂ supp(f1) supp(f2), so that
f1 ∗ f2 is indeed compactly supported.¶ We check the property (f1 ∗ f2)∗ = f2

∗ ∗ f1∗: for any
g ∈ G, we have

(f1 ∗ f2)∗(g) =
∫
G
f̄1(h)f̄2

(
h−1g−1

)
dµ

s(g)︷ ︸︸ ︷
t(g−1)(h)

=

∫
G
f̄1

(
g−1h

)
f̄2

(
h−1

)
dµt(g)(h)

= (f2
∗ ∗ f1∗)(g),

where we have used left-invariance of µ in the second line. For associativity of convolution, just
note that we have to use left-invariance and Fubini’s theorem in a straightforward manner (or
see [6, Proposition 1.34]). ■

Example 5.3.

(i) Groups. IfG is a locally compact Hausdorff group with a Haar measure µ, and we observe it
as a groupoid with a Haar system {µ}, then the convolution coincides with the definition in
section 1. However, the involution in the case of a groupoid is missing a modular function;
the main reason for the factor ∆(g−1) in the group case is that it makes involution an
L1-isometry. At the first glance, this means that our definitions of group and groupoid
C∗-algebras do not coincide. However, it may be shown that the groupoid C∗-algebra
C∗(G ⇒ {⋆}) of G (cf. Definition 5.9) is ∗-isomorphic to the group C∗-algebra C∗(G)
as defined in the first section, with the isomorphism induced by φ : CGroup

c (G) → Cc(G),

φ(f)(g) = ∆(g)
1
2 f(g). For more details, see [6, Example 1.50].

¶Note that K1K2 = m(G ∗G ∩ (K1 ×K2)) is compact, if K1 and K2 are.
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(ii) Action groupoids. If G × M ⇒ M is an action groupoid with the right-invariant Haar
system {µ × δx | x ∈ M} from example 3.4 (ii), the convolution and involution formulas
read:

(f1 ∗ f2)(g, x) =
∫
G
f1(gh

−1, hx)f2(h, x) dµ(h), f∗(g, x) = f(g−1, gx).

(iii) Pair groupoids. If M ×M ⇒ M is a pair groupoid from example 3.4 (iii), the convolution
and involution formulas read:

(f1 ∗ f2)(y, x) =
∫
X
f1(y, z)f2(z, x) dµ(z), f∗(y, x) = f(x, y).

(iv) Étale groupoids. Let G ⇒ M be étale. As we have shown in section 4, we may pick a Haar
system which consists of counting measures on t-fibres, so that

(f1 ∗ f2)(g) =
∑

t(h)=t(g)

f1(h)f2(h
−1g) =

∑
s(h)=s(g)

f1(gh
−1)f2(h) =

∑
g1g2=g

f1(g1)f2(g2).

In order for Cc(G) to become a normed ∗-algebra, we must equip it with a submultiplicative
norm ∥.∥, so that the involution becomes an isometry. A natural choice for the norm is

∥f∥I := max{∥f∥I,t , ∥f∥I,s},

where

∥f∥I,t = sup
x∈M

λ(|f |)(x) = sup
x∈M

∫
G
|f |dµx and ∥f∥I,s = sup

x∈M

∫
G
|f |dµx.

In the literature, ∥.∥I is known as the I-norm; note that a suggestive notation could also be
∥.∥∞,t and ∥.∥∞,s since these are just the supremum norms of a fibre-integrated function. We
will stick to ∥.∥I as to avoid potential confusion.

Proposition 5.4. ∥.∥I is a norm on the ∗-algebra Cc(G).

Proof. It is a routine check that ∥.∥I is a norm on the vector space Cc(G); for example, positive
definitness follows from the observation that ∥f∥I,t = 0 implies

∫
G |f |dµx = 0 for all x ∈ M ,

which further implies f |t−1(x) ≡ 0 µx-a.e., so that f ≡ 0 by continuity.
From the definition of involution, it is clear that ∥f∗∥I = ∥f∥I for any f ∈ Cc(G). To check

submultiplicativity, let f1, f2 ∈ Cc(G). We have:

∥f1 ∗ f2∥I,t = sup
x∈M

∫
G

∣∣∣∣ ∫
G
f1(h)f2(h

−1g) dµ

x︷︸︸︷
t(g) (h)

∣∣∣∣dµx(g)

≤ sup
x∈M

∫
G

(∫
G
|f1(h)|

∣∣f2(h−1g)
∣∣ dµx(h)

)
dµx(g)

= sup
x∈M

∫
G
|f1(h)|

(∫
G

∣∣f2(h−1g)
∣∣ dµx(g)

)
dµx(h)

= sup
x∈M

∫
G
|f1(h)|

(∫
G
|f2(g)|dµx(g)︸ ︷︷ ︸

≤∥f2∥I,t

)
dµx(h)

≤ ∥f1∥I,t ∥f2∥I,t ,

where we’ve used Fubini’s theorem in the third line and left-invariance in the fourth. We similarly
prove ∥f1 ∗ f2∥I,s ≤ ∥f1∥I,s ∥f2∥I,s, so it is clear that ∥f1 ∗ f2∥I ≤ ∥f1∥I ∥f2∥I . ■
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We sometimes denote the completion of Cc(G) with respect to the norm ∥.∥I as L1(G ⇒ M).

Definition 5.5. Let H be a Hilbert space. A ∗-homomorphism π : Cc(G) → B(H) is called a
representation of Cc(G). It is norm-decreasing if there holds ∥π(f)∥ ≤ ∥f∥I for all f ∈ Cc(G).

Example 5.6. Regular representations. Important nontrivial examples of representations of a
groupoid G ⇒ M with a Haar system µ may be constructed in the following way. Let θ be
any Radon measure on M , and define two positive linear functionals on Cc(G): ν = θ ◦ µ and
ν−1 = θ ◦ µ−1, i.e.

ν(f) =

∫
M

(∫
G
f(g) dµx(g)

)
dθ(x) and ν−1(f) =

∫
M

(∫
G
f(g) dµx(g)

)
dθ(x).

We now take H = L2(G, ν−1) as our Hilbert space and define Indθ : Cc(G) → B(H) as the
convolution of f ∈ Cc(G) with ρ ∈ L2(G, ν−1), i.e.

Indθ(f)(ρ)(g) =

∫
G
f(h)ρ(h−1g) dµt(g)(h). (3)

We omit the proof of the fact that Indθ is indeed norm-decreasing (see [6, Remark 1.40]). To
see that it is a ∗-representation, we let ρ, σ ∈ L2(G, ν−1) and straightforwardly compute:

⟨Indθ(f∗)ρ, σ⟩ =
∫
M

∫
G

(∫
G
f̄(h−1)ρ(h−1g) dµt(g)(h)

)
σ̄(g) dµx(g) dθ(x)

=

∫
M

∫
G

(∫
G
f̄(kg−1)ρ(k) dµs(g)(k)

)
σ̄(g) dµx(g) dθ(x)

=

∫
M

∫
G
ρ(k)

(∫
G
f̄(kg−1)σ̄(g) dµx(g)

)
dµx(k) dθ(x)

=

∫
M

∫
G
ρ(k)

(∫
G
f̄(h)σ̄(h−1k) dµt(k)(h)

)
dµx(k) dθ(x)

= ⟨ρ, Indθ(f)σ⟩ ,

where we have used the pushforward formula together with right-invariance in the second line
(k = h−1g), Fubini’s theorem in the third line, and pushforward formula together with left-
invariance in the fourth line (h = kg−1).

Remark 5.7. In particular, we have the important case of the regular representation of G ⇒ M
which arises from a Dirac measure δx onM . In that case, Indδx is a representation on L2(Gx, µx),
and is given for any f ∈ Cc(G) and ρ ∈ Cc(Gx) by

Indδx(f)(ρ)(g) =

∫
G
f(h)ρ(h−1g) dµt(g)(h).

Proposition 5.8. Let f ∈ Cc(G). If we define

∥f∥u = sup{∥π(f)∥ | π : Cc(G) → B(H) is a norm-decreasing representation},

we obtain a norm on Cc(G), called the universal norm.

Proof. The only nontrivial thing to check is positive definiteness. Suppose f ̸= 0, so that there
exists an element g ∈ G with f(g) ̸= 0. By continuity, there exists a neighborhood U of g such
that f |U ̸= 0. Now let x = s(g) and choose the Dirac measure δx on M to obtain a regular
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representation Indδx : Cc(G) → B(L2(Gx, µx)), so that if we pick ρ ∈ Cc(Gx) as a nonnegative
function with supp(ρ) ⊂ (Gt(g) ∩ U)−1g (note that this is an open subset of Gx containing 1x),
ρ(1x) = 1 and

∫
G ρdµx = 1, we get

Indδx(f)(ρ)(h) ̸= 0,

for all h in some neighborhood of g. This proves Indδx(f) ̸= 0. ■

Definition 5.9. The groupoid C∗-algebra C∗(G ⇒ M) is defined as the completion of the space
Cc(G) with respect to the universal norm.

5.1 The case of an étale groupoid

To conclude, we show that the construction of the groupoid C∗-algebra simplifies in the case of
étale groupoids. Throughout this section, we will continue assuming that G ⇒ M is a second-
countable, locally compact Hausdorff étale groupoid with a counting measure on each t-fibre, as
made possible by Proposition 4.3. For any f ∈ Cc(G), the I-norm on an étale groupoid reads

∥f∥I = sup
x∈M

max

{ ∑
s(g)=x

|f(g)| ,
∑

t(g)=x

|f(g)|
}
.

We claim that every ∗-representation of Cc(G) is automatically continuous:

Proposition 5.10. On an étale groupoid, every ∗-representation is norm-decreasing. The uni-
versal norm on Cc(G) is hence given for any f ∈ Cc(G) by

∥f∥u = sup{∥π(f)∥ | π : Cc(G) → B(H) is a representation}.

Lemma 5.11. For any f ∈ Cc(G), there is a constant Kf ≥ 0 such that ∥π(f)∥ ≤ Kf for any
representation π : Cc(G) → B(H). If f is supported in a bisection, we can take Kf = ∥f∥∞.

Proof. Since G is étale and f is compactly supported, we may write f as a finite sum f =
∑

i fi,
where each fi is supported on a bisection. We define Kf =

∑
i ∥fi∥∞.

Since π|Cc(1M ) is a representation of a commutative ∗-algebra, we must have ∥π(f)∥ ≤ ∥f∥∞
for any f ∈ Cc(1M ). Since fi is supported on a bisection, so is f∗

i , and we must have that
f∗
i ∗ fi is supported on 1M , and also ∥f∗

i ∗ fi∥∞ = ∥fi∥2∞. (To see this, just note that in general,
if f1, f2 are functions on G supported on bisections U1, U2, then we must have that for any
g = g1g2 ∈ U1U2, there holds (f1 ∗ f2)(g) = f1(g1)f2(g2).) Altogether,

∥π(fi)∥2 = ∥π(f∗
i ∗ fi)∥ ≤ ∥f∗

i ∗ fi∥∞ = ∥fi∥2∞ ,

and now by triangle inequality, ∥π(f)∥ ≤ Kf . The conclusion for when f is supported in a
bisection is clear since there is only one term in the sum. ■

Proof of proposition. Let π : Cc(G) → B(H) be a ∗-representation. To see that π is a norm-
decreasing representation, we only need to check that π is continuous with respect to the I-norm,
because then the (unique) extension of π to the completion (Cc(G), ∥.∥I) of the ∗-algebra Cc(G),
is continuous – it is a well-known fact that any ∗-homomorphism of C∗-algebras is automatically
norm-decreasing.

We first show that π is continuous in the final topology on Cc(G) induced by the inclusions
of subsets CK

c (G) = {f ∈ C(G) | supp(f) ⊂ K} indexed by compact subsets K ⊂ G, where
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each CK
c (G) carries the ∥.∥∞-norm. By the characterization of final topology, it is enough to

check that π|CK
c (G) is continuous for any compact K. By Proposition 4.3, we may cover K by

finitely many open bisections (Ui)
n
i=1, and write f =

∑
i fi where supp(fi) ∈ Ui. Then

∥π(f)∥ =

∥∥∥∥∥∑
i

π(fi)

∥∥∥∥∥ ≤
∑
i

∥π(fi)∥ ≤
∑
i

∥fi∥∞ ≤ n ∥f∥∞

where the second inequality follows from the previous lemma. This means that π is Lipschitz,
hence continuous in the final topology.

Now just note that for any f ∈ Cc(G), there holds ∥f∥∞ ≤ ∥f∥I since the fibrewise integral
is just summation, so that the final topology is coarser than the I-norm topology, implying that
π is continuous in the I-norm topology. ■
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